

Design Beyond Limits with
Figma

50+ Figma solutions for advanced collaboration,
prototyping, AI, and design systems in modern UX/UI

Šimon Jůn

Design Beyond Limits with Figma

Copyright © 2025 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express or
implied. Neither the author, nor Packt Publishing or its dealers and distributors, will be held liable for any
damages caused or alleged to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee
the accuracy of this information.

Portfolio Director: Ashwin Nair

Relationship Lead: Nitin Nainani

Project Manager: Ruvika Rao

Content Engineer: Nithya Sadanandan

Technical Editor: Rohit Singh

Copy Editor: Safis Editing

Indexer: Manju Arasan

Proofreader: Nithya Sadanandan

Production Designer: Salma Patel

Growth Lead: Sohini Ghosh

First published: August 2025

Production reference: 2050925

Published by Packt Publishing Ltd.

Grosvenor House

11 St Paul’s Square

Birmingham

B3 1RB, UK.

ISBN 978-1-83620-771-9

www.packtpub.com

I would like to express my heartfelt thanks to my wife for her unwavering support and encouragement

throughout the writing of this book. I am especially grateful to my young children, who graciously

allowed me to work through weekends and late nights to bring this project to life.

Huge thanks to my incredible beta readers for their invaluable insights and feedback. With over a

hundred thoughtful comments, they helped shape this book from a minimum viable product into

something truly complete. I’m deeply grateful to: Adam Sobotka, Ekaterina Pykhova, Jakub Sodomka,

Jana Pavlanská, Klaudia Vavrinčík, Martin Laudát, Michaela Mojzisova, Michal Strnadel, Pavel

Musinszkij, Tomáš Gluchman, Václav Kocián, Yana Abdulaeva, and Zdenek Zenger. Thank you all—

this wouldn’t be nearly as awesome without you.

Finally, my sincere thanks to the entire Packt team for their support and guidance throughout the

process, making this an enriching and rewarding experience.

– Šimon Jůn

Contributors

About the author
Šimon Jůn is a design-led product leader and Chief Operating Officer at Dotidot, based in

Prague, Czechia. Beginning his career as a product designer, he rose to the role of Chief Product

Officer and now shapes company strategy as COO—giving him a unique perspective that spans

hands-on design work and executive decision-making.

As the official Czech host of Friends of Figma, Šimon organizes community events and talks

that foster open knowledge sharing. Through his workshops and online training programs, he

has helped hundreds of teams streamline their Figma workflows and bridge the gap between

designers and developers.

About the reviewer
Elena Gonci is a product leader and builder specializing in transforming complex systems

through design thinking and team leadership. She has developed foundational design systems

and pioneered AI-assisted development workflows that have redefined how products are con-

ceived, designed, and delivered.

Renowned for her ability to bridge strategic vision with effective cross-functional leadership,

Elena works across diverse sectors including fintech, hospitality, and emerging technologies.

Her approach blends systems thinking with hands-on management and technical implementa-

tion—accelerating delivery timelines and producing scalable, production-ready solutions within

complex organizational environments.

Table of Contents

Preface � xxi

Chapter 1: Advanced Collaborative Design with Figma � 1

Getting the most out of this book – get to know your free benefits �������������������������������������� 2

Next-gen reader • 2

Interactive AI assistant (beta) • 3

DRM-free PDF or ePub version • 3

Communication gaps between designers and developers �� 4

What’s the problem? • 4

How to fix it • 5

Repetitive design meetings waste time and delay progress �� 6

What’s the problem? • 6

How to fix it • 7

Loom video walk-through • 13

Designers may not anticipate technical limitations, leading to missing details for

developers ��� 15

What’s the problem? • 15

How to fix it • 15

Constant changes in the design ��� 16

What’s the problem? • 16

How to fix it • 17

Streamlining version control and iterations �� 17

What’s the problem? • 18

How to fix it • 18

Unlocking advanced sharing and permissions settings �� 20

What’s the problem? • 20

Table of Contentsviii

How to fix it • 20

There’s more... • 21

Facilitating feedback loops in collaborative designs ��� 21

What’s the problem? • 22

How to fix it • 22

Chapter 2: Leveraging Figma’s Plugin Ecosystem � 25

Selecting essential plugins for enhanced functionality �� 26

Am I the only user? • 27

What’s the problem? • 27

How to fix it • 27

Plugin example—data.to.design • 27

Is this a one-time use? • 29

What’s the problem? • 29

How to fix it • 29

Plugin example—Batch Styler • 29

There’s more… • 31

Is this plugin paid? • 31

What’s the problem? • 31

How to fix it • 31

Plugin example—Stark • 31

Is it developed by a company? • 33

What’s the problem? • 33

How to fix it • 33

Are there any reliable alternatives? • 33

What’s the problem? • 34

How to fix it • 34

Streamlining workflow efficiency with time-saving plugins ��� 34

What’s the problem? • 34

How to fix it • 34

Plugin example—Token Studio • 35

Table of Contents ix

Plugin example—Variables to CSS • 36

Plugin example—Variables to JSON • 37

Plugin example—Builder.io • 38

Automating repetitive tasks with plugin integration ��� 38

What’s the problem? • 38

How to fix it • 38

Plugin example—Unsplash plugin • 38

Plugin example—Content Reel plugin • 39

Plugin example—Brandfetch • 40

Plugin example—Auto Documentation • 41

Specific project needs solved by plugins ��� 43

What’s the problem? • 43

How to fix it • 43

Plugin example—Charts plugin • 43

Plugin example—Downsize • 45

Linking Figma to other software for cross-platform integration �� 45

What’s the problem? • 45

How to fix it • 45

Plugin example—Jira • 46

Plugin example—Asana • 46

Plugin example—GitHub • 46

Plugin example—Figma to Webflow • 46

Plugin example—Figma to Framer • 48

There’s more… • 48

When to consider writing your own plugin ��� 49

What’s the problem? • 50

How to fix it • 50

Table of Contentsx

Chapter 3: Harnessing AI in Figma and Beyond � 51

Exploring Figma’s built-in AI features �� 51

Design tools • 52

Rename layers • 52

Searching with image or selection • 54

Adding interactions • 55

Replacing content • 56

First Draft • 57

Riffing and writing • 59

Rewrite this… • 59

Shorten • 60

Translate to… • 61

Image editing • 61

Remove background • 62

Boost resolution • 63

Make an image • 64

Edit image • 65

Automating routine tasks with AI in Figma �� 65

What’s the problem? • 66

How to fix it • 66

Integrating AI tools for faster prototyping ��� 66

What’s the problem? • 66

How to fix it • 67

Alternative tools for specific needs • 67

Tips for success with any tool • 68

Implementing AI into your design workflow ��� 68

What’s the problem? • 68

How to fix it • 68

Analyzing AI-enhanced design workflows—case studies �� 70

Marketing specialist assistant • 70

Table of Contents xi

UX writer assistant • 70

Marketing content assistant • 71

Navigating ethical challenges in AI-driven design �� 71

Chapter 4: Enhancing Designer-Developer Synergy � 73

Structuring design files for developer accessibility �� 74

What’s the problem? • 74

How to fix it • 74

Time-period files (quarterly files) • 75

Project files • 76

Branching • 79

Creating interactive prototypes for developers ��� 80

What’s the problem? • 80

How to fix it • 80

Quick tip—create user flow blueprints for maximum impact • 81

Streamlining designer-developer communication ��� 82

What’s the problem? • 82

How to fix it • 82

Quick tip—create communication cheat sheets for your team • 83

Aligning design goals with development objectives ��� 84

What’s the problem? • 84

How to fix it • 84

Leveraging Figma’s Dev Mode �� 86

What’s the problem? • 86

How to fix it • 86

Reading tokens and variables made simple • 86

Component playground for better understanding • 87

Comparing changes efficiently • 89

The Ready for Dev filter keeps everyone focused • 89

Code Connect bridges the final gap • 90

Quick tip—become the Dev Mode educator • 92

Table of Contentsxii

Chapter 5: Scaling Design Systems for Consistency � 93

Design system creation planning ��� 94

What’s the problem? • 94

How to fix it • 95

What is the goal of the design system? • 95

Where will the system be used? • 96

How much time (and money) do we have? • 97

Do we have any historic systems to build from? • 98

Can we use something pre-built? • 99

Are there technical limitations to consider? • 100

Do we have time to work on it consistently? • 101

Who will be using the design system? • 102

How many designers will work with it? • 102

How often do we need to onboard new people? • 102

How many developers will work with it? • 103

Building advanced component libraries �� 103

What’s the problem? • 103

How to fix it • 103

Create a clear component architecture • 103

Leverage component properties • 104

Manage nested properties carefully • 105

Standardize property naming conventions • 107

Create interactive components • 107

Add brief descriptions • 107

Use component background colors • 107

Ensuring systematic documentation and standards �� 108

What’s the problem? • 108

How to fix it • 108

Pick the right platform • 109

Establish documentation standards • 109

Table of Contents xiii

Document component behavior and usage • 109

Build a quick guide • 110

Managing design systems for growing teams ��� 111

What’s the problem? • 111

How to fix it • 111

Implement monthly design system checks • 111

Establish governance • 111

Implement version control • 112

Create multi-level access • 112

Build feedback loops • 112

Utilizing Figma’s design system tools ��� 112

What’s the problem? • 113

How to fix it • 113

Use Code Connect if you can • 113

Leverage design system analytics in Figma • 113

Implement design system analytics outside Figma • 114

Unpublish helper components • 114

Use branching for version control • 114

Dynamic system scaling to accommodate product iterations ��� 115

What’s the problem? • 115

How to fix it • 115

Implement modular architecture • 115

Establish update cycles • 115

Plan for deprecation • 116

Build experimentation spaces • 116

Chapter 6: Utilizing Design Tokens for Consistency � 117

Introducing design tokens as a design-code bridge ��� 118

What’s the problem? • 118

How to fix it • 118

When and how to introduce design tokens in your team ��� 120

Table of Contentsxiv

What’s the problem? • 120

How to fix it • 121

Define your target audience • 121

Find ambassadors • 121

Identify pain points (why you’re implementing them) • 122

Start small with immediate impact • 122

Establish success metrics • 122

Plan onboarding of current and future team members • 123

Difference between design tokens and Figma variables �� 123

What’s the problem? • 123

How to fix it • 124

For designers or developers? • 124

Figma versus other platforms • 124

Native versus plugin-based • 124

Token Studio isn’t just a plugin • 125

Token connection • 125

Theming • 125

Data structure • 125

Version control • 125

Types of tokens • 125

Code use • 126

Design token structure—how to build design tokens ��� 126

What’s the problem? • 126

How to fix it • 127

Proper hierarchy (structure) • 127

Practical token planning • 128

Implementing design tokens in Figma via Token Studio ��� 129

First use of the plugin • 130

Settings—Sync providers • 131

How to set up GitHub sync step by step • 131

Creation of a new set • 138

Table of Contents xv

Proper structure • 138

Creation of design tokens • 138

Creation of alias (semantic) tokens • 139

Applying design tokens to your design • 142

Using the Inspect tab • 143

Implementing Figma variables ��� 145

First steps with variables • 145

Creating your first variable and collection • 146

Creating semantic variables • 147

Variable constraints and scoping • 149

Organizing collections for modes • 150

Applying variables to designs • 151

Variables versus styles • 151

Version controlling design tokens with GitHub or GitLab ��� 152

What’s the problem? • 152

How to fix it • 152

Maintaining token documentation for cross-team consistency �� 153

What’s the problem? • 153

How to fix it • 153

Show them visually • 153

Proper categorization • 154

Use consistent vocabulary • 154

Proper naming • 154

Token descriptions • 155

Connected descriptions in design • 155

Chapter 7: Building Accessible Design Systems � 157

Understanding the importance of accessibility in design ��� 158

What’s the problem? • 158

How to fix it • 159

Management perspective • 159

Table of Contentsxvi

Designer perspective • 159

Creating components with proper color contrast ratios �� 160

What’s the problem? • 160

How to fix it • 161

Figma Color Contrast Checker • 161

Multiple design token sets/modes • 162

Looking ahead—Advanced Perceptual Contrast Algorithm (APCA) • 162

Designing for keyboard accessibility and navigation �� 163

What’s the problem? • 163

How to fix it • 163

Focus states • 163

Movement order • 164

Proper file handoff • 165

Ensuring screen reader compatibility in your design system ��� 166

What’s the problem? • 166

How to fix it • 167

Alternative text • 167

Semantic structure • 168

Accessible Rich Internet Applications (ARIA) • 169

Testing with real screen readers • 169

Documenting accessibility features in Figma ��� 170

What’s the problem? • 170

How to fix it • 170

Component documentation • 171

Dedicated accessibility documentation • 172

Accessibility acceptance criteria in user stories and tickets • 173

Integrating WCAG standards into your design process ��� 174

What’s the problem? • 174

How to fix it • 175

Start with understanding • 175

Design tokens are your best friend • 175

Table of Contents xvii

Build WCAG into your components • 176

Use AI assistants strategically • 177

Train yourself and your team • 177

Remember the scale • 177

Testing and validating accessibility across platforms ��� 178

What’s the problem? • 178

How to fix it • 178

Testing in Figma • 178

Testing in code • 180

Creating a testing routine • 183

Chapter 8: Precision Handoff Techniques � 185

Setting precise export options for accurate delivery �� 186

What’s the problem? • 186

How to fix it • 187

Large export files • 187

Modern file formats • 188

Wrong naming conventions • 188

Complex layers without clear export guidelines • 189

Poorly prepared export settings for multiple devices • 190

Test your exports • 191

SVG icon optimization for clean export ��� 191

What’s the problem? • 192

How to fix it • 192

Design with simple paths and shapes • 192

Flatten and combine paths instead of grouping • 193

Avoid masks, gradients, and complex effects • 193

Test your SVG export quality • 194

Preparing Figma variables for specific platforms �� 194

What’s the problem? • 194

How to fix it • 195

Table of Contentsxviii

Understand platform conventions • 195

Set up the variables for each platform • 195

Ensuring high-fidelity implementation ��� 198

What’s the problem? • 199

How to fix it • 199

Open communication channels with developers • 199

Establish review checkpoints • 200

Use shared testing environments • 200

Build quality assurance into the process • 201

Document approved deviations • 201

Create implementation guidelines • 201

Interactive prototype handoffs �� 202

What’s the problem? • 202

How to fix it • 202

Isn’t a video enough? • 202

Use someone else’s interaction/check technical feasibility • 203

Focus on user flows • 203

Create multiple prototype versions • 203

Animation handoffs ��� 205

What’s the problem? • 205

How to fix it • 205

Try to prepare the final form of the animation • 205

Quality assurance process �� 210

What’s the problem? • 210

How to fix it • 210

Establish design review checkpoints • 211

Create design QA checklists • 211

Involve designers in sprint reviews and retrospectives • 212

Test across real devices and conditions • 213

Table of Contents xix

Chapter 9: Elevating Stakeholder Engagement � 215

Running collaborative reviews with stakeholders �� 216

What’s the problem? • 216

How to fix it • 216

Establish a clear project narrative • 217

Review preparation • 217

Review session structure • 218

Managing the conversation • 219

Scripts for unclear feedback • 220

Documenting decisions • 220

Follow-up actions • 221

Using interactive prototypes to gather live feedback ��� 221

What’s the problem? • 221

How to fix it • 222

Scale prototype complexity to stakeholder needs • 222

Integrate real user feedback with stakeholder sessions • 224

Create stakeholder testing scenarios • 224

Implementing agile design changes based on stakeholder input ������������������������������������� 225

What’s the problem? • 225

How to fix it • 225

Clear feedback windows • 226

Change request prioritization • 226

Tiered feedback integration • 227

Branches or versioning • 228

Design Sprint • 228

Set AI boundaries and expectations • 228

Presenting the design rationale for stakeholder alignment �� 229

What’s the problem? • 229

How to fix it • 230

Different stakeholders need different levels of detail • 230

Table of Contentsxx

Use data-driven storytelling • 231

Different stories for different teams, but at their core, they are the same • 233

Managing complex feedback loops for stronger stakeholder relationships ���������������������� 234

What’s the problem? • 234

How to fix it • 234

Establishing feedback hierarchies • 234

Sequential versus parallel feedback collection • 235

Consolidating and synthesizing feedback • 235

Maintaining stakeholder relationships • 236

Relationship repair process • 236

Chapter 10: Unlock Your Book’s Exclusive Benefits � 239

Other Books You May Enjoy � 245

Index � 249

Preface

Design collaboration has evolved from isolated creative work to dynamic, real-time teamwork

spanning designers, developers, product managers, and stakeholders. In today’s fast-paced dig-

ital landscape, effective collaboration within design tools isn’t just helpful—it’s essential for

shipping successful products.

Figma stands out as the most powerful collaboration platform because it was built for teams from

the ground up. Beyond core design capabilities, Figma offers advanced features that transform

how teams work: real-time co-editing, sophisticated permissions, robust version control, seamless

developer handoffs, and integrations connecting design directly to code.

This cookbook guides you through advanced Figma techniques that go far beyond basic design

skills. We’ll explore sophisticated collaboration workflows, the plugin ecosystem, AI-powered

design acceleration, scalable design systems, design tokens for consistency, and accessibility

integration.

The second half focuses on design-to-development handoffs and stakeholder engagement strat-

egies that eliminate miscommunication and reduce project friction. Each chapter follows a prac-

tical recipe format, presenting real problems and step-by-step solutions you can implement

immediately.

These techniques come from years of working with design teams at companies of all sizes. Every

recipe addresses challenges I’ve encountered while helping teams transform their Figma work-

flows from basic design creation to sophisticated collaboration systems.

Who this book is for
Are you a seasoned UI/UX designer, developer, or product manager who feels like you’re only

scratching the surface of what Figma can do? This book is for you. Whether you’re struggling to

get your design systems to scale properly, are tired of endless back-and-forth with developers

during handoffs, or you’re frustrated by stakeholder feedback loops that seem to go nowhere,

we’ll show you how to transform these challenges into streamlined workflows.

Prefacexxii

You’ll get the most value from this book if you already know your way around Figma’s basic

features and work regularly with design teams. We assume you understand components, auto

layout, and basic prototyping. What you might not know yet is how to leverage Figma’s advanced

capabilities to solve the complex collaboration challenges that emerge as teams and projects grow.

If you’re ready to move beyond the basics and turn Figma into a true collaboration powerhouse

for your team, this book will take you there.

What this book covers
Chapter 1, Advanced Collaborative Design with Figma, covers sophisticated collaboration techniques

including real-time co-designing, advanced sharing settings, version control, and managing

complex design projects to streamline team workflows and enhance productivity.

Chapter 2, Leveraging Figma’s Plugin Ecosystem, explores how to discover, evaluate, and implement

plugins that extend Figma’s capabilities, automate routine tasks, and integrate with external

tools to create more efficient design workflows.

Chapter 3, Harnessing AI in Figma and Beyond, shows you how to leverage Figma’s built-in AI

features, integrate external AI tools for faster prototyping, automate routine design tasks, and

navigate the ethical considerations of AI-driven design processes.

Chapter 4, Enhancing Designer-Developer Synergy, details strategies for structuring design files for

developer accessibility, creating clear design annotations, streamlining communication channels,

and aligning design goals with development objectives.

Chapter 5, Scaling Design Systems for Consistency, explains how to build advanced component

libraries, implement systematic documentation, manage evolving design systems for growing

teams, and maintain brand coherence across extensive projects.

Chapter 6, Utilizing Design Tokens for Consistency, covers the implementation of design tokens as a

bridge between design and code, version controlling tokens with GitHub or GitLab, and creating

dynamic visual languages that maintain consistency across digital products.

Chapter 7, Building Accessible Design Systems, explores best practices for creating accessible compo-

nents, maintaining proper color contrast ratios, ensuring keyboard navigation and screen reader

compatibility, and integrating WCAG standards into your design process.

Chapter 8, Precision Handoff Techniques, demonstrates how to configure precise export settings,

create detailed design specifications and annotations, optimize handoff processes, and establish

feedback systems for continuous improvement between design and development teams.

Preface xxiii

Chapter 9, Elevating Stakeholder Engagement, shows you how to conduct impactful collaborative

reviews, utilize interactive prototypes for live feedback, manage iterative design changes, and

navigate complex feedback cycles to strengthen stakeholder relationships.

To get the most out of this book
Before diving into the advanced techniques covered in this book, you should be comfortable with

Figma’s core functionality. We assume you already know how to create and edit basic shapes, work

with text layers, use components and variants, apply auto layout, and build simple prototypes. If

you’re still learning these fundamentals, we recommend getting familiar with them first through

Figma’s official documentation or beginner tutorials.

You should also have experience working in team-based design environments. The collaboration

techniques we cover build on the assumption that you understand the challenges of working

with multiple designers, developers, and stakeholders on shared projects.

Find the updated images
The updated color images for the book are placed on GitHub at https://github.com/

PacktPublishing/Design-Beyond-Limits-with-Figma. We also have other code bundles from

our rich catalog of books and videos available at https://github.com/PacktPublishing. Check

them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this book.

You can download it here: https://packt.link/gbp/9781836207719.

Conventions used
There are a number of text conventions used throughout this book.

Code In Text: Indicates code words in text, database table names, folder names, filenames, file

extensions, pathnames, dummy URLs, user input, and Twitter handles. For example: “Organize

your video library systematically to prevent chaos. Use a consistent naming convention, such as

YYYY - Area - Initiative Name, for all your recordings (for example, 2025 - Onboarding -

Mobile App Redesign).”

https://github.com/PacktPublishing/Design-Beyond-Limits-with-Figma
https://github.com/PacktPublishing/Design-Beyond-Limits-with-Figma
https://github.com/PacktPublishing
https://packt.link/gbp/9781836207719

Prefacexxiv

A block of code is set as follows:

// Instead of this:

Figma: "Purple/500"

CSS: "primary-color"

iOS: "colorPurple"

Android: "color_purple_primary"

// Use a shared naming convention:

"color.primary.default": "#5C50E6"

When we wish to draw your attention to a particular part of a code block, the relevant lines or

items are set in bold:

// Instead of this:

Figma: "Purple/500"

CSS: "primary-color"

iOS: "colorPurple"

Android: "color_purple_primary"

// Use a shared naming convention:

"color.primary.default": "#5C50E6"

Bold: Indicates a new term, an important word, or words that you see on the screen. For instance,

words in menus or dialog boxes appear in the text like this. For example: “Figma’s Replace con-

tent feature attempts to automate this often repetitive task, reducing the time spent manually

inserting placeholder text and images.”

 Warnings or important notes appear like this.

 Tips and tricks appear like this.

Preface xxv

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book or have any general feed-

back, please email us at customercare@packt.com and mention the book’s title in the subject

of your message.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes do

happen. If you have found a mistake in this book, we would be grateful if you reported this to

us. Please visit http://www.packt.com/submit-errata, click Submit Errata, and fill in the form.

Piracy: If you come across any illegal copies of our works in any form on the internet, we would

be grateful if you would provide us with the location address or website name. Please contact us

at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in and you

are interested in either writing or contributing to a book, please visit http://authors.packt.com/.

http://www.packt.com/submit-errata
http://authors.packt.com/

Prefacexxvi

Share your thoughts
Once you’ve read Design Beyond Limits with Figma, we’d love to hear your thoughts! Please click

here to go straight to the Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://www.amazon.in/review/create-review/error?asin=1836207719
https://www.amazon.in/review/create-review/error?asin=1836207719

1
Advanced Collaborative Design
with Figma

The first time I used Figma in 2017, I was blown away by how seamlessly it supported collaboration.

It was the first design tool truly built with teamwork at its core. While this approach might seem

standard today, it was groundbreaking at the time. It shifted the mindset from isolated design work

(“I’ll work on this until the deadline and then share it”) to a dynamic process of ongoing feedback

and iteration. And as we all know, consistent feedback leads to better products. Figma excels at

enabling this, but it’s essential to understand the full range of collaborative features it offers.

This chapter dives into eight crucial areas of collaboration that will empower your team to cre-

ate outstanding products by improving communication, streamlining workflows, and ensuring

alignment between design and development. Mastering these areas will help you avoid common

pitfalls, reduce inefficiencies, and deliver high-quality products faster, with fewer roadblocks

along the way.

In this chapter, we will walk through the following topics:

•	 Communication gaps between designers and developers

•	 Repetitive design meetings waste time and delay progress

•	 Designers may not anticipate technical limitations, leading to missing details for devel-

opers

•	 Constant changes in the design

•	 Streamlining version control and iterations

•	 Unlocking advanced sharing and permissions settings

Advanced Collaborative Design with Figma2

•	 Real-time co-designing for maximum team productivity

•	 Facilitating feedback loops in collaborative designs

Getting the most out of this book – get to know your
free benefits
Unlock exclusive free benefits that come with your purchase, thoughtfully crafted to supercharge

your learning journey and help you learn without limits.

Here’s a quick overview of what you get with this book:

Next-gen reader

Figure 1.1: Illustration of the
next-gen Packt Reader’s fea-

tures

Our web-based reader, designed to help you

learn effectively, comes with the following

features:

•	 Multi-device progress sync:

Learn from any device with

seamless progress sync.

•	 Highlighting and notetaking:

Turn your reading into lasting

knowledge.

•	 Bookmarking: Revisit your

most important learnings

anytime.

•	 Dark mode: Focus with

minimal eye strain by switching

to dark or sepia mode.

Chapter 1 3

Interactive AI assistant (beta)

Figure 1.2: Illustration of Packt’s
AI assistant

Our interactive AI assistant has been trained

on the content of this book, to maximize

your learning experience. It comes with the

following features:

•	 Summarize it: Summarize key

sections or an entire chapter.

•	 AI code explainers: In the

next-gen Packt Reader, click

the Explain button above each

code block for AI-powered code

explanations.

Note: The AI assistant is part of next-gen Packt

Reader and is still in beta.

DRM-free PDF or ePub version

Figure 1.3: Free PDF and ePub

Learn without limits with the following perks

included with your purchase:

•	 Learn from anywhere with a

DRM-free PDF copy of this book.

•	 Use your favorite e-reader to

learn using a DRM-free ePub

version of this book.

Advanced Collaborative Design with Figma4

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.

com/unlock, then search for this book

by name. Ensure it’s the correct edition.

Note: Keep your purchase invoice ready

before you start.

Communication gaps between designers and
developers
One of the most persistent challenges in product development is the interaction between de-

signers and developers. While both disciplines work toward the same goal—creating function-

al, user-friendly products—they often approach problems from entirely different perspectives,

leading to friction and miscommunication.

What’s the problem?
Designers and developers are two essential forces in product development, but they often strug-

gle to understand each other. As a designer, it’s important to remember that what you create

in Figma isn’t the final product—the production code is. However, despite working toward the

same goal, many teams face miscommunication that goes beyond just different terminologies

and perspectives.

The challenges run much deeper than word choices. Designers and developers operate with

fundamentally different mental models. Designers work with fluid, relational thinking, placing

elements freely in space and considering visual hierarchy and flow—much like how Figma’s

free-canvas approach works. Developers, on the other hand, operate within structured, hier-

archical frameworks shaped by how code, databases, and systems are organized. They think in

terms of top-to-bottom sequences, nested structures, and rigid organizational principles. This

fundamental difference in spatial thinking creates natural tension when translating design to code.

Additionally, there’s often a knowledge gap around existing technical infrastructure. New design-

ers, and even experienced ones joining a project, may lack the historical context of how current

systems were built, what technical constraints exist, or what potential blockers might arise from

legacy code. Understanding the production environment and existing technical architecture is

crucial for creating designs that work within real-world constraints, not just in an ideal vacuum.

packtpub.com/unlock
packtpub.com/unlock

Chapter 1 5

Here are some common terminology differences between Figma and code:

Figma Code

Auto layout Flexbox

Corner radius Border-radius

Frames Divs

Variables/design

tokens
CSS variables

Prototypes Clickable mockups (via JS/HTML)

Table 1.1 – Terminology difference between Figma and code

Understanding these differences is crucial to ensuring a smoother workflow and more effective

collaboration between designers and developers.

How to fix it
To bridge this gap, designers and developers must actively work toward a common understanding:

•	 Involve developers early: Bringing developers into the design process from the start

ensures technical feasibility and helps avoid late-stage surprises. Make sure everyone un-

derstands the purpose behind design decisions through clear design annotation. I highly

recommend walking through the entire design with developers, explicitly describing each

screen and interaction rather than assuming anything is “obvious.” This serves two crucial

purposes: developers can challenge your solutions and gain a deep understanding of user

flows and interactions, while you, as a designer, can catch hidden flaws you might have

missed during the design phase or that went unnoticed during design critiques.

•	 Establish a shared vocabulary: Document and define key terms that designers and devel-

opers use differently. This makes communication clearer and reduces misunderstandings.

Consider using tools such as Storybook or similar documentation platforms to create a

shared reference point where both teams can see how design components translate to

code, helping establish common terminology and understanding.

•	 Use Figma’s Dev Mode: Leverage Figma’s developer handoff features to provide precise

specifications and make it easier for developers to inspect design elements.

•	 Encourage cross-team learning: Designers should develop a basic understanding of

development constraints, while developers should familiarize themselves with design

principles.

Advanced Collaborative Design with Figma6

•	 Create a feedback loop: Regularly review designs together to ensure alignment and ad-

dress potential issues before they escalate. Remember that this loop goes both ways. De-

signers should also be involved in QA processes to verify that implementations match

design intent, helping prevent details from getting lost in translation. Make sure everyone

knows their roles and responsibilities, and establish clear points of contact so team mem-

bers know who to reach out to when questions or ambiguities arise.

There are two primary ways to establish continuous feedback loops:

•	 Scheduled weekly feedback sessions: This is the most common approach, where

teams set up recurring calendar meetings for feedback. Designers present their

progress, and other designers and developers discuss any necessary changes or

improvements.

•	 Daily asynchronous feedback: A more fluid approach, which I personally prefer,

involves integrating feedback into the team’s everyday workflow. At Dotidot, de-

signers and developers provide feedback asynchronously at the end of each day

using Loom recordings. This fosters a culture where feedback is a natural and

ongoing part of collaboration, rather than being confined to structured meetings.

Even if your team lacks hybrid designer developers, following these practices will save significant

time, reduce confusion, and create a more seamless workflow between both disciplines.

Repetitive design meetings waste time and delay
progress
We’ve all been there. You sit in a meeting room (or on a video call) listening to someone explain

what each screen does, what happens when you click this button, and why they chose that par-

ticular color. Meanwhile, you’re thinking, “I could have understood this in half the time if it

were properly documented.” Design meetings are essential, but when they become repetitive

explanation sessions rather than productive decision-making discussions, they drain energy

and slow down progress.

What’s the problem?
Endless design meetings often consume valuable time without adding significant value. While

collaboration is essential, excessive discussions over the same design elements can lead to delays,

frustration, and decision fatigue. Instead of refining and progressing, teams can get stuck in cycles

of unnecessary revisions and redundant conversations.

Chapter 1 7

A key difference between junior and senior designers is how they approach documentation and

handoff. Experienced designers go beyond aesthetics—they consider functionality and develop-

ment requirements upfront, reducing the need for excessive meetings. By structuring Figma files

effectively and using built-in collaboration tools, teams can minimize disruptions and maximize

efficiency.

How to fix it
To break free from the cycle of excessive design meetings, we can leverage screen annotations.

Effectively using screen annotations helps convey the full story behind your design. It’s important

to note that these are custom-built components that we create and use in Figma, not built-in

Figma features. You’ll need to design and build these annotation components yourself or as a

team to use them in your design files. Here’s how to utilize them better:

•	 Figma file structure: Before diving into specific annotations, establish a consistent Figma

file structure that serves as a single source of truth for your entire project. I use a standard

seven-page structure in all my projects:

•	 01 – Getting Started

•	 02 – Project Name

•	 03 – Documentation

•	 04 – Components

•	 05 – Playground and Exploration

•	 06 – Archive

•	 07 – Cover

This unchangeable structure helps me easily duplicate files and start new projects quickly,

while developers know exactly where to find what they need. We’ll dive much deeper into

this file organization approach in Chapter 4, where I’ll share the detailed methodology

behind each page and how it enhances designer-developer collaboration.

•	 Designer notes: Add context directly next to your design with designer notes. Avoid using

comments or Figma Dev Mode annotations, as Dev annotations require all users to have

paid seats. Comments can be used even from viewer seats (free), but can be easily lost,

and they aren’t shown at first glance as easily as designer notes.

Advanced Collaborative Design with Figma8

Instead, rely on prepared elements for clarity.

Figure 1.4 – An example designer note

This card demonstrates how to provide additional context within Figma designs. The note

explains that filtering is based on the provided documentation and highlights specific

parameters used in the project. Visual annotations direct attention to essential elements,

ensuring clarity and fostering collaboration.

•	 Copy note: Provide specific copywriting instructions to ensure developers understand

how to implement text accurately within the design.

Figure 1.5 – An example copywriting instruction

Chapter 1 9

•	 Variant annotations: Don’t duplicate your design just to showcase small changes. Dupli-

cating entire designs can create confusion about development complexity. At first glance,

a project may seem much larger and more complex than it actually is. Additionally, ex-

cessive duplication can overwhelm developers, making it easier to miss crucial details

buried within an abundance of similar-looking screens. Use variant cards to illustrate

differences clearly and help developers grasp the full scope of adjustments. For example,

opening a Figma file with 10 screens might appear overwhelming but could represent

small changes on a few screens. Variants streamline first impressions, time estimation,

and overall clarity. However, when variant logic becomes too complex to explain through

annotations alone, consider using prototyping instead (if the budget and time allow), as

interactive demonstrations can sometimes communicate functionality more effectively

than extensive written explanations.

Figure 1.6 – Dropdown use case

Advanced Collaborative Design with Figma10

Here’s an alternate version of the tab variation case:

Figure 1.7 – Tab variation case

•	 Highlight nice-to-have features: While agile workflows prioritize speed, it’s sometimes

beneficial to design beyond the Minimum Viable Product (MVP), which is the simplest

version of a product that includes only the core features needed to satisfy early users and

gather feedback for future improvements, to showcase the broader idea. Use visually

distinct elements to denote nice-to-have parts (for example, a feature such as Search).

Chapter 1 11

 This approach improves communication with stakeholders, ensuring they see the com-

plete vision and grasp your intent more effectively.

Figure 1.8 – Nice-to-have cards in a design

Advanced Collaborative Design with Figma12

•	 Ticket cards (Jira plugin for Figma): Link your Figma designs directly with project man-

agement tools such as Jira by adding ticket cards. These cards can display responsible

team members and task statuses right in Figma.

Figure 1.9 – Ticket card for new design project

•	 Flow headings: Include flow headings to outline logical sections of your design. This

helps collaborators and developers understand the structure and implement the design

as cohesive, story-driven blocks for quicker development.

Chapter 1 13

Figure 1.10 – Flow heading for a new section in a design file

All of these annotations are crucial for every Figma handoff. Remember, a good design file isn’t

just about frames with designs; it’s about effectively transferring the right information from

design to development, product owners, testers, and other stakeholders involved in the imple-

mentation process.

Loom video walk-through
Record videos for everything! Loom is an incredible tool—you just click and record, and your

video is automatically uploaded to the cloud. You can then paste the link directly into Figma.

Everything is clearly explained, and anyone can revisit the video as needed.

I shared my workflow on LinkedIn:

1.	 Record a short Loom video explaining the feedback or a new feature idea. I include exam-

ples and walk through our app directly in the video.

2.	 Loom AI automatically generates a transcript of the video.

Advanced Collaborative Design with Figma14

3.	 I use the transcript as input for ChatGPT, paired with a custom prompt tailored to our Jira

ticket structure (description, requirements, acceptance criteria, etc.).

4.	 Within seconds, I have a complete Jira ticket ready to go! I add the Loom video link to the

ticket for reference, ensuring clarity for designers.

Figure 1.11 – Loom video gallery

Chapter 1 15

Organize your video library systematically to prevent chaos. Use a consistent naming convention, such

as YYYY - Area - Initiative Name, for all your recordings (for example, 2025 - Onboarding -

Mobile App Redesign). This makes videos easily searchable both in Loom and when referenced in

tickets. Create a dedicated page or section in your Figma file specifically for important videos and links.

Developers and team members are often pressed for time and want everything served in one conve-

nient location rather than hunting through multiple tools. Having a Video Library or Key Resources

page in your Figma file with all relevant Loom links ensures that critical context is always accessible

without requiring people to search through chat histories or project management tools.

Designers may not anticipate technical limitations,
leading to missing details for developers
Picture this: you’ve just finished what you believe is your best design yet. Every pixel is perfectly

placed, the user flow is seamless, and the visual hierarchy guides users effortlessly through the

experience. You hand it off to the development team, expecting them to be as excited as you are.

Instead, you’re met with concerns about API limitations, performance issues, or existing system

constraints you never knew existed. Suddenly, your beautiful design needs significant compro-

mises, or worse, a complete rethink. This disconnect between design vision and technical reality

is one of the most common sources of friction in product teams.

What’s the problem?
Designers often lack awareness of technical limitations, which can lead to missing details for

developers. While designers excel at understanding user needs and business goals, gaps in tech-

nical knowledge can create challenges. Legacy tech debt, platform constraints, and performance

considerations are often overlooked. Without early collaboration, these issues surface late in

development, causing costly revisions.

How to fix it
The following steps will help designers to know and understand the technical limitations early

in the design process, ensuring that the collaboration will be faster and smoother for both sides:

•	 Involve developers early: Bring developers into the design process from the start to iden-

tify technical constraints before they become blockers.

•	 Assign a developer partner: Designate a developer as a support resource for the project

to provide real-time technical insights.

Advanced Collaborative Design with Figma16

•	 Use Figma’s spotlight feature: Leverage quick, real-time calls to align on design feasibility

without unnecessary scheduling overhead.

•	 Clarify technical needs: Ask developers for input on system limitations, reusable com-

ponents, and performance considerations upfront.

•	 Document technical constraints: Keep a shared space where designers, developers, and

product managers can reference key limitations and best practices to avoid repetitive issues.

•	 Leverage AI tools for technical understanding: When in doubt, leverage AI tools that are

fantastic at understanding technological limitations and try to understand why something

can/cannot be done. There is no need to become a code expert, but becoming a design

expert requires an understanding of code limitations.

By fostering an open dialogue between design and development, teams can avoid misalignment,

reduce unnecessary rework, and build products more efficiently.

Constant changes in the design
You know the feeling. You’ve just finished explaining the latest design iteration to your devel-

opment team, they’ve started coding, and then it happens. A stakeholder suggests “just a small

change,” or user testing reveals an insight that requires rethinking the entire flow. Meanwhile,

your developers are caught in the middle, unsure whether to continue with the current version

or wait for the next iteration. What should have been a straightforward development cycle turns

into a confusing juggling act where everyone is working on different versions of the same product.

Managing design changes effectively isn’t just about version control; it’s about maintaining team

sanity and project momentum.

What’s the problem?
Frequent design changes are inevitable in many projects, but they can create confusion and inef-

ficiencies. A major challenge arises when development teams are already working on one version

while designers are iterating on a newer one. This leads to uncertainty about what should be

implemented, potential rework, and a frustrating experience for both designers and developers.

In one project with a large insurance company, we faced this exact issue—multiple design itera-

tions were being worked on simultaneously while the older version was still under development.

Developers struggled to build a product that kept evolving beneath them.

Chapter 1 17

How to fix it
To manage continuous design changes effectively, consider these two primary approaches:

•	 Branching for isolated iterations: This is an advanced feature that should only be used for

big, complex projects where multiple people are working simultaneously on the same file.

Think of branching like creating a separate workspace where you can experiment without

affecting the main file that others are using, for example, if you’re working on a design

system component library with multiple designers, or developing a major feature for a

large enterprise company where several team members need to contribute simultaneously.

When you create a branch, you’re essentially making a copy of the current file where you

can make changes safely. Once your changes are finalized and approved, you can merge

them back into the main file. This prevents your experimental work or iterations from

disrupting the live version that developers or other team members are actively using.

It prevents unnecessary changes from affecting the live version.

Challenges: Requires Figma’s Organization or Enterprise plan; designers may be unfa-

miliar with branching workflows. To overcome this, consider a developer-led training

session on Git-based workflows.

•	 Versioning for clear change management:

1.	 Manually create a version checkpoint before significant updates.

2.	 Label versions clearly (for example, Onboarding_Flow_v1.2) to document progress

and provide a stable reference.

3.	 Use version descriptions to highlight key changes, reducing confusion for devel-

opers and stakeholders.

By adopting structured version control and branching techniques, you can reduce confusion,

minimize rework, and create a smoother workflow between design and development teams.

Streamlining version control and iterations
How many times have you found yourself staring at a Figma file wondering, “Is this the latest

version?” or “What exactly changed since yesterday?” Maybe you’ve been in a meeting where

someone references “the version we discussed last week,” but nobody can figure out which one

that was. The difference between teams that struggle with version confusion and those that

maintain a crystal-clear project history often comes down to understanding when and how to

use manual versioning strategically.

Advanced Collaborative Design with Figma18

What’s the problem?
Many teams underutilize Figma’s versioning features, missing out on its full potential. The tool

offers two types of versioning—automatic (autosaves) and manual—but manual versioning,

when used strategically, can significantly enhance workflows. However, teams often struggle

with knowing when and how to create manual versions, leading to inefficiencies in sharing and

collaboration. Without clear guidelines, this powerful feature becomes underused or misapplied,

limiting its impact on productivity.

How to fix it
When you decide to create a manual version, it should be at the end of a workflow cycle. This could

be when you’re preparing a version to send to stakeholders or clients, or when you’re working in

two-week sprints and need to hand off a stable version to development. The exact timing varies

across different teams I’ve worked with, but understanding how to create effective versions is

more important than the specific timing.

Here is how to create a version in Figma:

1.	 Click on the arrow next to the filename at the top left of your Figma interface.

2.	 Select Show version history from the drop-down menu.

Click the + button next to Version history in the right panel. Every version can have a name and

description. Let’s talk about naming first. You can use several naming structures to maintain

consistency:

•	 By Milestones: ProjectName_MilestoneName_vX

Example: Dashboard_v1 or Onboarding_Flow_v3

•	 By Date: ProjectName_YYYY-MM-DD

Example: Onboarding_Flow_2025-01-15

•	 By Sprint or Release Cycle: ProjectName_SprintX or ProjectName_ReleaseX

Example: Onboarding_Flow_Sprint12 or Onboarding_Flow_Release2.1

•	 By Stakeholder Review Stage: ProjectName_StakeholderType_Stage_vX

Example: Onboarding_Flow_Review_v1 or Onboarding_Flow_Feedback_v2

Consistency is key—ensure the same structure is used across all your files to avoid confusion.

Chapter 1 19

For descriptions, keep them concise but informative. Use them as a changelog to highlight dif-

ferences from the previous version. Here’s a quick tip: leverage emojis for clarity:

•	 ✅ Approved changes

•	 ➕ Additions

•	 ❌ Deletions

The following figure showcases the Figma version modal, where you can document and track all

changes for future reference, ensuring clarity and seamless collaboration.

Figure 1.12 – Figma new version modal

Once you’ve established versions, you can easily copy the link for a specific version and share it

with developers or stakeholders. However, note that older versions are view-only—people can’t

comment on them. A workaround for this limitation is duplicating the version into a separate

file where comments and edits can continue. Meanwhile, keep the “hard” version as a separate

file to maintain a clear record. Just remember to archive or close older versions to prevent an

overflow of active files.

Versions that have been handed off to development or stakeholders should never be edited, even

though technical workarounds exist. Editing defeats the entire purpose of version control. Once a

version is shared, treat it as locked and create a new version for any subsequent changes. This main-

tains the integrity of your project timeline and ensures everyone is referencing the same stable point

in your design history.

Advanced Collaborative Design with Figma20

Unlocking advanced sharing and permissions
settings
There’s nothing quite like the panic that sets in when you realize you might have accidentally

shared confidential client work with the wrong people. Or when you discover that your “quick

internal mockup” with placeholder text saying “This feature sucks” somehow made its way to a

stakeholder presentation. Figma’s sharing settings seem straightforward at first glance, but the

devil is in the details. One wrong click on Anyone instead of only people you invite and suddenly

your private design exploration is discoverable by anyone online. Getting sharing permissions right

isn’t just about security; it’s about maintaining professionalism, protecting sensitive information,

and ensuring the right people have the right level of access at the right time.

What’s the problem?
Managing sharing permissions in Figma can become a challenge, particularly when dealing with

external collaborators or large teams. Improper settings, such as leaving files open to “anyone,”

can lead to unauthorized access, unintentional edits, or even the mishandling of sensitive content.

Additionally, using group email addresses for collaboration can limit individual accountability in

comments. Without a clear structure for separating internal and external files, informal content

can unintentionally reach professional audiences, creating potential embarrassment or confusion.

How to fix it
Figma has a standard level of sharing permissions—not overly complex—but there are a couple

of valuable tricks I’ve learned the hard way during my career:

1.	 If you open the file link to anyone, ensure that the What can they do on View setting

and Viewers can copy, share, and export this file options are unchecked. This will save

you from unnecessary problems caused by unintended editors accessing the file (trust

me, it happened to me!) and provide some guardrails against unauthorized copying of

your file by anyone online.

2.	 Understand Figma’s different invitation levels to manage seats effectively. You can invite

people at three different levels: directly to a specific file (most restrictive), to a project

(moderate access), or to the entire team (full access). Each level has different implica-

tions for your seat count and billing. When sharing with external stakeholders or clients,

consider inviting them only to the specific file rather than the entire project or team to

maintain better control over access and costs.

Chapter 1 21

There’s more...
For better security, consider adding a password to the file or avoid using Anyone as an access

setting altogether. Instead, add specific email addresses. When inviting a large number of peo-

ple, you can copy and paste multiple email addresses at once, or use group email addresses such

as marketing@company.com or figma@company.com. Group access works seamlessly, as Figma

doesn’t limit access from the same account being used by multiple people. The only downside

is that comments from group accounts won’t display individual names unless explicitly noted.

For Organization and Enterprise plans, you gain access to Activity Logs, providing a detailed

overview of who accessed your files and what actions they performed.

Do a regular seats and activities check-in to uncover potential problems. If done regularly, this

can take a half hour or less.

Enterprise users also benefit from the Password Protection Required feature, which enforces

password use for all shared files—adding an extra layer of security.

Another smart approach is to establish a system where files shared externally, such as with cli-

ents or partners, are clearly separated from internal ones. This minimizes the risk of accidentally

including informal content in professional files. Let’s be honest—most of us have added memes

or jokes in Figma files for team fun at some point. I once experienced the embarrassment of such

a file being shared with a client’s C-level executives. Luckily, they found it amusing, but it was

a lesson learned! To avoid such situations, I recommend tagging shared files with an emoji and

text in the name, such as [🔗 SHARED WITH CLIENT] File Name. This simple step can save you

from potential awkwardness in the future.

Facilitating feedback loops in collaborative designs
Figma changed my perspective on design when I realized how deeply it integrates collaboration

into the core of the experience. However, many designers still don’t take full advantage of its

potential. I’ve mentored numerous young designers who are hesitant to ask for feedback.

“What if someone finds out I’m not that good?” they often ask me. My response is always, “So what?”

marketing@company.com
figma@company.com

Advanced Collaborative Design with Figma22

Design is fundamentally about solving problems, and humans are naturally better at solving

problems together. If we could hunt mammoths as a team, why can’t we share an early Figma

file? Here’s the reality: designers aren’t supposed to handle every single edge case of a product.

That’s what engineers excel at. Our role is to support and unblock when something is missing

or unclear. The design-to-development process isn’t always linear, where design ends and de-

velopment starts. It’s an ongoing collaboration where feedback becomes your best ally in design.

I frequently tell my team that having them to rely on allows me to work faster. I don’t need ev-

erything to be perfect before sharing—it’s through collaboration and early input that we achieve

our ultimate goal: building the best possible product.

There are countless ways to foster this collaborative feedback process. While it takes experimen-

tation to find what works best for you, I’ll share a few methods to get you started.

What’s the problem?
Many designers hesitate to fully embrace Figma’s collaborative features, often avoiding feedback

due to fear of judgment or exposing their skills. This reluctance hampers the potential of collabo-

rative problem-solving and slows down design progress. The lack of early input leads to delayed

iterations and missed opportunities for improvement. Establishing a culture of open and effective

feedback is crucial for leveraging Figma’s full potential and creating the best possible products.

How to fix it
Effective communication is crucial for a product’s success. In recent years, the rise of remote teams

and increasing workloads have made seamless communication even more critical. Teams must

work proactively to ensure clarity and collaboration despite these challenges.

One way of doing this is by sharing feedback through a Slack, Teams, Webex, or other channel.

Sometimes, you need feedback from people outside your design team. At Dotidot, for example, we

often turn to our automation strategists or performance marketing geeks for their opinions—they

align closely with our users’ perspectives and often provide insights smarter than ChatGPT :D.

To streamline this, we created a dedicated Slack channel specifically for design feedback. It’s cru-

cial to make the request as straightforward as possible to keep people engaged over time. Every

message should include the following:

•	 Title of the request.

•	 Brief description of the problem or assumption.

•	 Include a video explanation for more complex issues.

Chapter 1 23

•	 Link to a specific section in Figma (not the entire file).

•	 Deadline for responses to help them plan their time.

•	 Mentions of all relevant team members for feedback, along with those who can contribute

to the discussion in the thread below.

•	 Recording of every design critique. Yes, here it is again—Loom. You might think I own the

company, given how often I mention it, but I genuinely love the tool. Whenever we have a

quick call or live design critique, we always record the session and link it directly in Figma

next to the design. This allows designers to focus on the discussion—thinking critically

about the design—instead of scrambling to write comments or notes. After the meeting,

you can revisit the recording and review specific parts as needed. Loom’s AI-generated

chapters make it easy to jump to the sections that matter most.

If you plan a long meeting (though in 99% of cases, long meetings aren’t necessary), con-

sider breaking it into multiple shorter videos instead of one lengthy Loom recording. This

approach will help you move faster in the future and make it easier to revisit important

points.

By the way, these video recordings also serve as excellent training materials for new team

members. They can quickly learn from past challenges or mistakes, significantly speeding

up the onboarding process.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before

you start.

packtpub.com/unlock
packtpub.com/unlock

2
Leveraging Figma’s Plugin
Ecosystem

Plugins are an incredible addition to Figma, enabling users to accomplish much more. However,

with tens of thousands of plugins available, it can be challenging to select the right ones. In this

chapter, I will share my approach to choosing plugins, when to encourage your team to explore

plugins, and finally, how to decide if developing your own plugin from scratch is the best solution.

Since the plugin ecosystem evolves rapidly and we can’t update this book every week, I’ve created a

curated list of recommended plugins that I update regularly. You can find the latest plugin recom-

mendations at simonjun.com/best-figma-plugins.

We will discuss these six areas in this chapter:

•	 Selecting essential plugins for enhanced functionality

•	 Streamlining workflow efficiency with time-saving plugins

•	 Automating repetitive tasks with plugin integration

•	 Specific project needs solved by plugins

•	 Linking Figma to other software for cross-platform integration

•	 When to consider writing your own plugin

simonjun.com/best-figma-plugins

Leveraging Figma’s Plugin Ecosystem26

Selecting essential plugins for enhanced functionality
Before showcasing the selected plugins, it’s important to discuss the process of selecting them.

At first glance, choosing a plugin might seem simple—just pick one and test it. But what happens

if you build your workflow around a plugin that later becomes unsupported or outdated? This

could disrupt your processes. Selecting plugins shouldn’t be a quick decision, much like choosing

new design tools, website hosting, or any platform critical to your success. Here are the questions

I always ask myself when selecting plugins:

•	 Am I the only user?

•	 Is this a one-time use?

•	 Is this plugin paid?

•	 Is it developed by a company?

•	 Are there any reliable alternatives?

These questions are important for ensuring the longevity of your decision.

Figure 2.1 – My plugin decision workflow

Chapter 2 27

Let’s look at these questions in detail.

Am I the only user?
Let’s look at our first question: the problem and its solution.

What’s the problem?
Relying on a plugin that is used only by you might seem low-risk, but what happens if it stops

working tomorrow? While your team’s workflow won’t be affected, your efficiency might take a

hit, requiring time to find an alternative or adjust your process.

How to fix it
If a plugin is limited to your personal workflow, you have the flexibility to replace it or adjust your

process if it becomes unsupported. Small productivity boosters, such as the CSV Data to Figma

plugin, fall into this category. Before committing, always check for alternative plugins and ensure

there are backups available to avoid unnecessary disruptions.

Plugin example—data.to.design
Review the Figma community plugin page, where you can read more and activate the plugin:
https://www.figma.com/community/plugin/1133729773197702197/data-to-design-by-

divriots-google-sheets-csv-json-airtable-or-notion-to-figma.

One of the most impactful plugins I used during my consulting days helped bring prototypes to

life with real data. Imagine this: you’re presenting a new project to a client or the management

team. These folks aren’t designers—they don’t speak the language of Figma prototypes or pro-

duction code. But what they do understand is data that feels real and relevant.

Here’s where these plugins shine. With just a few rows of data from the client’s CRM, you can

populate your prototypes with authentic information. Picture presenting an internal reporting

dashboard that displays actual client names and real revenue figures instead of placeholders

such as “John Doe” or “$11111.” The impact? Game-changing. It fosters stronger connections with

stakeholders and drives home the project’s relevance.

https://www.figma.com/community/plugin/1133729773197702197/data-to-design-by-divriots-google-sheets-csv-json-airtable-or-notion-to-figma
https://www.figma.com/community/plugin/1133729773197702197/data-to-design-by-divriots-google-sheets-csv-json-airtable-or-notion-to-figma

Leveraging Figma’s Plugin Ecosystem28

You can easily map your data fields to your design and populate them in one click.

Figure 2.2 – Data explorer and data mapping in the plugin

While Figma now offers a native Replace content AI feature (which I’ll cover in Chapter 3), this

plugin excels because it lets you use actual data from your client’s CRMs or ERPs—not AI-gener-

ated content, but real, meaningful information that truly reflects their business.

In an era where AI is rendering lorem ipsum obsolete, the mantra is simple: make it real. A design

packed with genuine data delivers an entirely different experience—one that resonates.

Chapter 2 29

Is this a one-time use?
Not every plugin is meant to be a long-term addition to your workflow.

What’s the problem?
When selecting a plugin for a single-use task, long-term compatibility isn’t a concern. But if you

expect to use it repeatedly, you need to ensure that it will still function in the future. Will the

plugin work the same way next year? If not, you might find yourself scrambling for alternatives.

How to fix it
If a plugin is intended for a one-time task, you can be more flexible in your selection. However,

if it’s something your team will depend on regularly, check its update history and ensure it has

long-term support. A great example of a one-time-use plugin is Styles to Variable Converters,

which helped many teams transition their styles into variables when Figma introduced the feature.

Another great example is Batch Styler by Jax Six, which simplifies managing multiple styles at once.

Plugin example—Batch Styler
Go to the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/818203235789864127/batch-styler.

I used this plugin extensively in the past, so it deserves an honorable mention. As the name sug-

gests, it works with styles. Nowadays, most workflows have shifted to Figma variables or Token

Studio (which I’ll cover shortly), so I don’t use it as often. However, I know that some designers

still rely on styles, especially for text formatting.

The plugin’s main advantage is its ability to update multiple styles simultaneously, dramatically

reducing the time needed for design system maintenance and updates.

https://www.figma.com/community/plugin/818203235789864127/batch-styler

Leveraging Figma’s Plugin Ecosystem30

Figure 2.3 – Updating styles in bulk

Chapter 2 31

There’s more…
When browsing any plugin on the Figma community page, you can check the date of its last update.

If a plugin hasn’t been updated in over two years, it’s wise to be cautious about integrating it into

your long-term workflow, as it’s unlikely to receive further updates. Another useful indicator is the

comment section below the plugin, where you can gauge user feedback and recent experiences.

Is this plugin paid?
Not everything can be community-driven forever.

What’s the problem?
Many plugins are developed as passion projects by independent designers or developers. While

this contributes to a thriving design community—with hundreds of small, free plugins working

perfectly fine—relying on unsupported plugins for long-term workflows can pose risks. For larger,

more complex plugins where you expect continuous development and feature updates, you need

to think long term. Without a monetization model or sustained company backing, these plugins

may become outdated, break, or be abandoned, leaving users without support or updates.

How to fix it
To ensure reliability, prioritize plugins that have a sustainable business model or corporate back-

ing. A well-maintained plugin is more likely to receive updates and ongoing support. A great

example is Stark, which has a strong commercial foundation and continues to evolve with the

needs of its users.

Plugin example—Stark
Visit the Figma community plugin page, where you can read more and activate the plugin: https://
www.figma.com/community/plugin/732603254453395948/stark-contrast-accessibility-

checker.

I’m happy to see that accessibility is becoming one of the key focuses for designers. One driving

factor is the European Accessibility Act (EAA), which will take effect in June 2025. However,

beyond compliance, I truly believe that when given the opportunity, we should aim to design

inclusive experiences that benefit everyone.

https://www.figma.com/community/plugin/732603254453395948/stark-contrast-accessibility-checker
https://www.figma.com/community/plugin/732603254453395948/stark-contrast-accessibility-checker
https://www.figma.com/community/plugin/732603254453395948/stark-contrast-accessibility-checker

Leveraging Figma’s Plugin Ecosystem32

In the past, I used Stark primarily for color contrast checks and vision impairment simulations.

Today, the plugin offers even more—features such as Typography Checker and Touch Targets

(Area) Check help ensure designs are both readable and user-friendly. These tools also assist

developers by defining appropriate click zones, making accessibility a natural part of the design

workflow.

Figure 2.4 – Contrast Checker for selected button and text color

Testing your designs through vision impairment simulations takes only moments but provides in-

valuable insights into how your product will be experienced by users with different visual abilities.

Figure 2.5 – Simulation of different vision disorders for you to see how your design will look

Chapter 2 33

We should always keep accessibility at the forefront of our design process—it’s not just a compli-

ance checkbox but a fundamental principle that ensures our products serve everyone, regardless

of their abilities.

Is it developed by a company?
The source of a plugin can tell you a lot about its long-term viability. While individual develop-

ers create amazing plugins, company-backed tools often have more resources behind them for

maintenance and updates. However, keep in mind that company-developed plugins are typically

designed to work best with their own workflows and ecosystems, which might not always be a

one-size-fits-all solution for every team.

What’s the problem?
Not all plugins are independently developed—some are backed by companies as part of their

larger ecosystem. These plugins often come with greater reliability and long-term support com-

pared to those developed by individual creators. A company has a vested interest in maintain-

ing and updating its tools to ensure seamless integration with its core products. While there is

always a risk that a plugin’s functionality might shift in priority, businesses are generally more

accountable for providing consistent updates and support, making them a more stable choice

for long-term workflows.

How to fix it
To mitigate risks, prioritize plugins developed by companies with a vested interest in maintaining

them. Plugins such as Figma to Webflow or Figma to Framer exist because these companies need

smooth integration between their products. If a plugin is backed by a company that actively sup-

ports its product ecosystem, there’s a higher likelihood it will be maintained. A strong example

of this is Jira connectors and widgets, which are consistently updated and widely used in project

management workflows.

Are there any reliable alternatives?
Every tool needs a backup plan. Before committing to a plugin that might become a critical part

of your workflow, it’s important to know whether there are viable alternatives you could switch

to if needed.

Leveraging Figma’s Plugin Ecosystem34

What’s the problem?
When selecting a plugin, it’s crucial to consider whether there are reliable alternatives. While many

CSV data-to-Figma plugins exist, making it easy to switch if one stops working, some plugins lack

viable substitutes. If a plugin becomes unsupported, teams relying on it may struggle to find a

replacement, causing workflow disruptions and additional development overhead.

How to fix it
To mitigate risks, always check whether alternative plugins exist before committing to one. If a

plugin is critical to your workflow and has no direct competitors, consider its long-term sustain-

ability. Assess the developer’s track record, update frequency, and user community engagement.

For example, Token Studio is a highly complex plugin for managing large design systems, and

replacing it would require significant effort. In such cases, ensure you have a contingency plan

or explore whether an in-house solution is feasible.

Streamlining workflow efficiency with time-saving
plugins
Let’s face it—design workflows can often get bogged down with repetitive tasks and inefficient

handoff processes. The right plugins can transform these pain points into smooth, automated

experiences. In this section, I’ll share some of my favorite plugins that have saved my team count-

less hours and significantly improved our collaboration with developers.

What’s the problem?
The handoff between design and development is one of the most time-consuming steps in any

design project. Miscommunication and missing details can lead to inefficiencies, delays, and

errors in implementation. Ensuring that developers receive the correct information is crucial for

a smooth transition and to prevent unnecessary revisions.

How to fix it
Using Figma plugins designed for handoff can streamline this process and improve workflow

efficiency. Tools such as Token Studio help manage design tokens, while Variables to CSS and

Variables to JSON convert Figma variables into developer-friendly formats. These plugins ensure

that developers have the necessary information at their fingertips, reducing friction and accel-

erating project timelines.

Chapter 2 35

Plugin example—Token Studio
Go to the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/843461159747178978/tokens-studio-for-figma.

Token Studio is an essential tool for teams managing and implementing design tokens within

Figma. It acts as a bridge between design and development, converting tokens into code-ready

formats. If your team handles large-scale design systems, Token Studio is indispensable for main-

taining consistency across multiple projects.

Figure 2.6 – Token Studio showcase in Figma. This is a demo project from the Token Studio
team. Real structures are much more complex

 https://www.figma.com/community/plugin/843461159747178978/tokens-studio-for-figma
 https://www.figma.com/community/plugin/843461159747178978/tokens-studio-for-figma

Leveraging Figma’s Plugin Ecosystem36

Plugin example—Variables to CSS
Check out the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/843461159747178978/tokens-studio-for-figma.

Figma variables are powerful, but remember—your final product isn’t the Figma file itself, but

the production code. While variables in Figma enhance design consistency, they remain useful

only if developers can easily access and implement them. Variables to CSS helps bridge this gap

by exporting Figma variables into a developer-friendly CSS format, ensuring smooth handoff

and better collaboration between designers and developers.

In the following screenshot, you can see the structured output of our design tokens exported to

CSS, demonstrating how Figma variables are transformed into a code-ready format for developers.

Figure 2.7 – Showcase of exported CSS code from Figma variables in the Dotidot design system

https://www.figma.com/community/plugin/843461159747178978/tokens-studio-for-figma

Chapter 2 37

Plugin example—Variables to JSON
Check out the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/1345399750040406570/figma-variables-to-json.

Similar to Variables to CSS, this plugin exports Figma variables in JSON format. The benefit?

Developers can easily integrate design tokens into their workflows and even build custom ex-

port pipelines tailored to their project’s needs. JSON-based exports provide flexibility, enabling

teams to adjust naming conventions, value formats, and integration processes based on specific

requirements.

Just like in the CSS example previously, you can see how Figma variables maintain their hierar-

chical structure when exported to JSON. The plugin offers customizable export settings, allowing

you to adjust the output format to match your team’s specific requirements.

Figure 2.8 – Showcase of exported CSS code from Figma variables in the Dotidot design system

https://www.figma.com/community/plugin/1345399750040406570/figma-variables-to-json

Leveraging Figma’s Plugin Ecosystem38

Plugin example—Builder.io
Visit the Figma community plugin page, where you can read more and activate the plugin: https://
www.figma.com/community/plugin/747985167520967365/builder-io-ai-powered-figma-to-

code-react-vue-tailwind-more.

Developers in my community highly recommend this AI-powered design-to-code plugin, which

can accelerate the development process. It’s not meant to replace developers but rather to enhance

their efficiency and speed. If you’re a developer, keep an open mind and give it a try—you might

find it a valuable addition to your workflow.

Automating repetitive tasks with plugin integration
Every designer knows the feeling—you’re deep in creative flow when suddenly you hit a roadblock

of mundane, repetitive tasks. Whether it’s populating designs with realistic content, organizing

layers, or preparing assets for handoff, these necessary but tedious activities can drain your cre-

ative energy. This is where automation plugins truly shine.

What’s the problem?
Designers and developers often find themselves repeating the same tasks, such as documentation,

handoff preparation, and populating designs with real content. On larger projects, these tasks

become time-consuming and, frankly, tedious. This repetition can slow down workflows, lead

to inefficiencies, and take time away from more creative and strategic work.

How to fix it
I have prepared a few plugins for you that solve completely different problems, but all of them

can automate your repetitive work so that you will have more time to focus on what truly mat-

ters—solving problems for your users.

Plugin example—Unsplash plugin
Go to the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/738454987945972471/unsplash.

https://www.figma.com/community/plugin/747985167520967365/builder-io-ai-powered-figma-to-code-react-vue-tailwind-more
https://www.figma.com/community/plugin/747985167520967365/builder-io-ai-powered-figma-to-code-react-vue-tailwind-more
https://www.figma.com/community/plugin/747985167520967365/builder-io-ai-powered-figma-to-code-react-vue-tailwind-more
https://www.figma.com/community/plugin/738454987945972471/unsplash

Chapter 2 39

Every design should be presented or reviewed in its final form—essentially, how it will appear

in production. However, in many cases, final assets, such as images, may not be readily available.

Unsplash, one of the largest free image banks in the world, offers a dedicated Figma plugin that

simplifies the process. If you’re working on a large project with hundreds of images, this can save

you valuable time by eliminating the need to switch between Figma and a browser, download

images, and manually place them into your design. Instead, you can insert high-quality imag-

es directly, allowing you to focus on refining your design rather than handling repetitive asset

management tasks.

Plugin example—Content Reel plugin
Check out the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/731627216655469013/content-reel.

Content Reel is a powerful plugin that allows you to quickly populate your designs with real-world

content. It is especially useful for different types of teams:

•	 Agencies/freelancers: When presenting designs to clients, realistic content can make a

big difference. Content Reel provides instant access to diverse names, surnames, email

addresses, phone numbers, country lists, and people’s profile pictures. No more generic

placeholder text or repeated user@gmail.com entries.

•	 In-house teams: When testing edge cases, Content Reel helps validate the design. By

inserting real addresses, varied filenames, or long pieces of text, designers can stress-

test components and identify UI issues, such as improper text truncation or input field

overflow. This will help you save a huge amount of time in development.

Best of all, you can upload your own datasets and reuse them as needed. If your project requires

specific types of content, such as long text in different languages, Content Reel ensures you can

work with relevant information at all times.

https://www.figma.com/community/plugin/731627216655469013/content-reel

Leveraging Figma’s Plugin Ecosystem40

As shown in the following screenshot, Content Reel provides an extensive library of pre-populated,

realistic data categories that you can instantly drag and drop into your designs.

Figure 2.9 – Content Reel example of first names

Plugin example—Brandfetch
Check out the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/733590967040604714/brandfetch.

https://www.figma.com/community/plugin/733590967040604714/brandfetch

Chapter 2 41

When working with brand logos, you have two options: store a massive file containing logos

from around the world or use Brandfetch to fetch them on demand. The choice seems simple, but

if you find yourself googling brand names + logos repeatedly, it quickly becomes frustrating and

inefficient. With Brandfetch, you can instantly access multiple versions of logos for major brands,

ensuring consistency and saving valuable time in your workflow. One of the standout features

is having multiple variations of logos in one place, as demonstrated in the Spotify example here.

Figure 2.10 – All logos of popular brands in one place

Plugin example—Auto Documentation
Visit the Figma community plugin page, where you can read more and activate the plugin: https://

www.figma.com/community/plugin/1134018716847999330/auto-documentation.

https://www.figma.com/community/plugin/1134018716847999330/auto-documentation
https://www.figma.com/community/plugin/1134018716847999330/auto-documentation

Leveraging Figma’s Plugin Ecosystem42

Design system documentation is essential. This plugin can generate a complete structure for

your Figma variables or styles in seconds. For large systems with hundreds of tokens, this can

save you an entire day—time better spent refining key design decisions rather than manually

organizing styles.

Figure 2.11 – Documentation of color design tokens/variables

Chapter 2 43

Specific project needs solved by plugins
Every project comes with its unique challenges and requirements. While standard design tools

cover the basics, specialized plugins can be the secret weapon that helps you tackle those proj-

ect-specific hurdles with ease. Let’s explore some plugins that solve particularly niche but im-

portant design problems.

What’s the problem?
Some projects are highly specialized. I encountered this frequently during my freelancing days.

One month, I was working on a large, multinational e-commerce store; the next, I was designing

for a fintech start-up. These projects were exciting, but they often had unique requirements that

needed to be solved at the design level. Unfortunately, you can’t always copy and paste a solution

from one project to another because each has its own constraints and challenges.

How to fix it
Over time, I discovered several plugins that helped me navigate these unique design challenges.

While these tools may be niche, they can be invaluable if you find yourself in a similar situation.

Plugin example—Charts plugin
Go to the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/731451122947612104/charts.

Designing charts can be challenging. If you’ve worked on complex dashboards before, you know

the difficulties involved. Chart generation plugins were among the first I searched for and paid for

because, without them, I wouldn’t have been able to complete certain projects in the past. Always

ensure you discuss charts with developers, as they are unlikely to build them from scratch. Instead,

they will rely on existing libraries, so your chosen plugin should align with the functionality of

the selected library to ensure seamless integration.

https://www.figma.com/community/plugin/731451122947612104/charts

Leveraging Figma’s Plugin Ecosystem44

Alternatively, you can reverse-engineer this process—start by identifying which chart library

your development team prefers, then find the plugin that best matches its capabilities and out-

put format.

Figure 2.12 – Chart preview and settings before inserting into Figma

Chapter 2 45

Plugin example—Downsize
Check out the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/869495400795251845/downsize.

Large Figma files often contain numerous images, which can be particularly challenging for

visually heavy projects such as brand websites. Figma’s ability to save images in their original

resolution provides a great starting point for design work. However, many developers fail to

optimize images, simply downloading them from Figma as JPEG or PNG files and using them

directly in their projects. This can lead to slow load times due to large asset sizes.

Downsize is a one-click solution for image optimization, ensuring that assets are properly com-

pressed before they are exported and used in development. Another significant benefit of this

plugin is improving Figma’s performance. If your Figma files feel sluggish, optimizing images

with Downsize can greatly enhance speed and responsiveness. I’ve personally found it to be an

effective way to streamline workflows and improve project efficiency.

Linking Figma to other software for cross-platform
integration
Design rarely exists in isolation. In today’s interconnected workflow environments, your Figma

designs need to communicate seamlessly with other tools in your tech stack. The right integration

plugins can eliminate tedious manual transfers and keep your project information synchronized

across platforms.

What’s the problem?
Figma doesn’t exist in a vacuum. It’s part of a broader workflow involving multiple tools to trans-

form designs into production-ready code. Through my mentoring sessions, I’ve often encountered

teams that are highly skilled in Figma but struggle to integrate it seamlessly with their other tools,

leading to inefficiencies in their workflow.

How to fix it
Take a step back and analyze your daily workflow. Identify the tools you and your team rely on

and explore plugins that bridge the gap between Figma and those platforms. I will highlight

some of the ones I use, but depending on your stack, you may find alternatives that better fit

your needs. Since every team’s toolset is unique, the key is finding integrations that streamline

your specific workflow.

https://www.figma.com/community/plugin/869495400795251845/downsize

Leveraging Figma’s Plugin Ecosystem46

Plugin example—Jira
Go to the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/1220802563996996107/jira.

Easily integrate Jira issues in real time with your Figma file. If your team relies on Jira, this plugin

makes it much easier for designers, developers, and product managers to check specifications

directly within Figma. Since this is an official plugin, you can trust its reliability and long-term

support, ensuring a smooth workflow for your team.

Figure 2.13 – Jira widget in Figma

Plugin example—Asana
Check out the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/widget/1098405969270214551/asana.

Similar to the Jira integration, this official plugin connects Asana tasks in real time with your

Figma file. It streamlines collaboration by allowing designers, developers, and product managers

to access task details directly within Figma, reducing the need to switch between tools.

Plugin example—GitHub
Go to the Figma community plugin page, where you can read more and activate the plugin:

https://www.figma.com/community/plugin/1220512233196109878/github.

Seamlessly integrate GitHub issues into your design workflow. This plugin is particularly useful

for technical designers and developers, enabling them to access issues directly within Figma. By

consolidating everything in one place, it enhances efficiency and eliminates the need to switch

between platforms.

Plugin example—Figma to Webflow
Check out the Figma community plugin page, where you can read more and activate the plugin:
https://www.figma.com/community/plugin/1164923964214525039/figma-to-webflow-html-

css-and-website.

https://www.figma.com/community/plugin/1220802563996996107/jira
https://www.figma.com/community/widget/1098405969270214551/asana
https://www.figma.com/community/plugin/1220512233196109878/github
https://www.figma.com/community/plugin/1164923964214525039/figma-to-webflow-html-css-and-website
https://www.figma.com/community/plugin/1164923964214525039/figma-to-webflow-html-css-and-website

Chapter 2 47

Webflow is a low-code/no-code website-building platform that allows marketing teams to move

faster without relying on developers. Many major brands use Webflow for its flexibility and ease

of use, but it’s also a great choice for personal projects. Having used Webflow alongside Figma

for years, I was excited about this integration.

The plugin had a rough start, so if you’ve tried it before and dismissed it—like I did—it’s worth

giving it another shot. Now, you can sync variables, styles, and even entire components effort-

lessly. Grab a coffee and try it out!

Figure 2.14 – Figma to Webflow variables sync

Leveraging Figma’s Plugin Ecosystem48

Plugin example—Figma to Framer
Figma community plugin page, where you can read more and activate the plugin: https://www.

figma.com/community/plugin/1037108608720448600/figma-to-html-with-framer.

Similar to the Figma to Webflow integration, this plugin connects Figma with Framer. While I

don’t personally use Framer, I reached out to the community, and the feedback has been over-

whelmingly positive. Given its strong reception, I wanted to highlight it as a valuable option for

those working with Framer.

There’s more…
The last point I want to highlight is Figma’s integration with other tools. Figma has its own

plugins within external platforms, enhancing connectivity and streamlining workflows. Two key

use cases I rely on daily are Google Workspace and Jira, where these integrations make it much

easier to link designs with documents or tickets, ensuring seamless collaboration across teams.

Figure 2.15 – In all Google documents, you will see this Figma filename pill instead of the
whole link

The following figure demonstrates how seamlessly you can embed Figma into Jira tickets, allowing

you to access designs directly without opening Figma separately.

https://www.figma.com/community/plugin/1037108608720448600/figma-to-html-with-framer
https://www.figma.com/community/plugin/1037108608720448600/figma-to-html-with-framer

Chapter 2 49

Figure 2.16 – An overview of a Jira ticket for Figma right inside Jira. No need to open up Figma

When to consider writing your own plugin
Sometimes, despite the vast plugin marketplace, you might find yourself thinking, “I wish there

were a plugin that could...” That might be your cue to consider creating a custom solution. While

it may sound intimidating, developing your own Figma plugin can be more accessible than you

might think—and it could be the perfect answer to your specific workflow challenges.

Leveraging Figma’s Plugin Ecosystem50

What’s the problem?
Sometimes, the available plugins on the market just don’t meet your needs. What’s the solution?

Build your own! Before you turn the page, hear me out—I know most of you are designers, but

many of my designer friends have successfully created their own plugins. Even my younger brother

built one while still in high school!

How to fix it
While building your own plugin is one option, remember that you don’t need to be a developer

to create one. I’ve worked with several companies where designers approached plugin creation

as simply another design task. They created the specifications and designs, then someone from

the development team built it during their regular sprints, treating it like any other ticket.

If you want to create something simple, don’t be afraid to try building it yourself. However, if you

need something more complex—particularly if it needs to connect to your databases or other

systems—don’t hesitate to ask your development team for help. Figma provides excellent docu-

mentation, making it relatively straightforward for developers to implement your ideas efficiently.

This book isn’t about plugin development, so I won’t dive too deep into the technical details.

But don’t worry—it’s easier than you think! Grab a coffee, fire up ChatGPT, and check out the

following Figma tutorial. You’ve got this!

https://help.figma.com/hc/en-us/articles/4407260620823--BYFP-1-Overview.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before

you start.

https://help.figma.com/hc/en-us/articles/4407260620823--BYFP-1-Overview
packtpub.com/unlock
packtpub.com/unlock

3
Harnessing AI in Figma and
Beyond

AI is integrated into almost every tool nowadays—if a tool doesn’t have AI, some might jokingly

say it’s already obsolete. Over the past few years, nearly every software has jumped on the AI

bandwagon, often implementing features that feel experimental or lack a clear use case. In this

chapter, I will explore Figma’s AI capabilities and how I leverage other AI tools to enhance my

productivity in Figma. We will cover these six key topics:

•	 Exploring Figma’s built-in AI features

•	 Automating routine tasks with AI in Figma

•	 Integrating AI tools for faster prototyping

•	 Implementing AI into your design workflow

•	 Analyzing AI-enhanced design workflows—case studies

•	 Navigating ethical challenges in AI-driven design

Exploring Figma’s built-in AI features
Figma includes several AI features, each aimed at addressing different challenges. We’ll begin

with the most useful ones before discussing those that feel less refined. Keep in mind that my

perspectives are based on extensive experience using Figma in various teams. If you’re a lighter

user, some of these features might be more beneficial for you, as your expectations may differ.

Figma categorizes its AI features into three groups:

•	 Design tools

Harnessing AI in Figma and Beyond52

•	 Riffing and writing

•	 Image editing

Design tools
Design tools have the most AI features, so we will start with them:

•	 Rename layers

•	 Search with image or selection

•	 Add interactions

•	 Replace content

•	 First draft

Rename layers
Let’s start with a seemingly small feature that delivers massive impact in collaborative design

environments. Layer naming might not be the most exciting topic, but any designer who’s inherited

a messy Figma file knows how crucial proper organization becomes during complex projects.

Keep in mind that most established companies have their own documented naming conventions for

layers. While AI-generated names can be helpful, you may need to adjust them to match your team’s

specific standards and conventions.

What’s the problem?
One of the biggest challenges in Figma collaboration is dealing with disorganized and poorly

named layers. Many designers skip proper layer naming, leading to chaos in large team projects.

Imagine a file filled with labels such as Frame236472—no one wants to waste time deciphering that.

When multiple people collaborate on a project, unclear naming makes handoffs to developers and

other stakeholders frustrating. Even solo designers need structured files because Figma designs

often move into development or marketing assets.

Disclaimer

All insights into Figma’s built-in AI features are based on my experience at the time

of writing—mid-2025. If I express skepticism about a feature or state that it doesn’t

work well, the real question isn’t if it will work, but when. If you’re reading this later,

check again—because right now, these features are at their least developed, and

tomorrow they will be better, and the day after that, even better.

Chapter 3 53

How to fix it
Figma’s Rename layers AI feature automates this process, making files easier to navigate and

reducing errors. Here’s how you can use it effectively:

1.	 Select multiple layers: Choose all the layers in your design that need renaming.

2.	 Run the AI rename tool: Let Figma analyze the structure and suggest logical names.

3.	 Review and adjust: While AI-generated names are often helpful, a quick review ensures

they follow your team’s conventions.

4.	 Adopt naming standards: If working in a team, define clear naming guidelines so AI-

generated names remain consistent.

Figure 3.1 – The same component with the right naming (left side) and the wrong
naming (right side)

Harnessing AI in Figma and Beyond54

Properly named layers improve workflow efficiency and enhance other Figma features such as

Smart Animate and Select Matching Layers, making interactions smoother and troubleshooting

easier.

Searching with image or selection
This feature might be one of my favorites that I use daily. Finding specific elements in large design

systems used to be a major workflow bottleneck, but Figma’s AI-powered search has transformed

how we locate and reuse components across projects.

What’s the problem?
Searching for specific elements across multiple Figma files can be incredibly time-consuming,

especially when working on large-scale projects with extensive design libraries. Designers often

waste valuable time scrolling through files or sending Slack messages asking for the correct link.

This inefficiency disrupts workflow and slows down production. When dealing with complex

design systems, finding the right asset at the right time is critical for maintaining consistency

and efficiency.

How to fix it
Figma’s search with image or selection feature simplifies asset retrieval by allowing users to find

elements using a screenshot or selection. Here’s how to leverage it effectively:

1.	 Capture a screenshot: If you come across an element in another project or on a live website/

app, take a quick screenshot.

2.	 Paste or select in Figma: Upload the screenshot or choose an element directly within

Figma.

3.	 Run the AI search tool: Figma scans its database and returns matching assets, streamlining

the search process.

Chapter 3 55

Figure 3.2 – Simple screenshot of Dotidot navigation from your live app – Figma finds the
right components in seconds

For example, if I need to locate the navigation design from our Dotidot app, I can simply screenshot

the live app, paste it into Figma, and instantly retrieve the relevant component. This feature works

reliably in nearly every case, making it an invaluable tool for managing complex design systems.

Adding interactions
Creating prototypes manually can be tedious, especially for complex flows with multiple states

and transitions. Figma’s AI-powered interaction builder aims to streamline this process, though

its success varies depending on the complexity of your design.

Harnessing AI in Figma and Beyond56

What’s the problem?
Creating a complex prototype for user testing or showcasing can be a time-consuming and

error-prone process. Manually setting up interactions between multiple screens requires

careful planning and execution. While AI-driven prototyping aims to automate this process, its

effectiveness depends heavily on understanding the design’s intent. For simple user flows, AI-

generated interactions work well, but for complex scenarios involving multiple user journeys,

AI often falls short. Designers may find themselves spending more time fixing auto-generated

interactions rather than benefiting from automation.

How to fix it
Figma’s AI-powered interaction tool can assist in automating the prototyping process. Here’s

how to make the most of it:

1.	 Start with a clear flow: Define the user journey (positions of your frames on the artboard)

beforehand to guide AI in setting up logical interactions.

2.	 Enable AI-powered interactions: Allow Figma to auto-generate connections between

frames based on common user behaviors.

3.	 Test the prototype: Run the AI-generated interactions to check for accuracy.

4.	 Refine and adjust: Manually tweak the interactions to ensure they align with your

intended user experience.

For simple interactions, this tool can save significant time. However, for more intricate workflows,

manual refinement is often necessary to achieve the best results.

Replacing content
Populating designs with realistic content is essential for accurate testing and client presentations.

Figma’s Replace content feature attempts to automate this often repetitive task, reducing the

time spent manually inserting placeholder text and images.

What’s the problem?
When working with long lists, tables, or repetitive components in Figma, manually inserting

diverse content can be tedious and time-consuming. Designers often struggle with maintaining

variety in placeholders while ensuring a realistic representation of the final product. Without

automation, this process can slow down workflows and lead to inconsistencies in design, such

as using placeholder text that doesn’t reflect realistic content lengths or mixing different content

styles across similar components.

Chapter 3 57

How to fix it
Figma’s Replace content feature automates content population, helping designers quickly fill

repetitive structures with varied text and images. Here’s how to use it effectively:

1.	 Prepare your layout: Ensure you are using auto layout with properly structured structure

(ideally components).

2.	 Select multiple items: Highlight the elements you want to populate with different content.

3.	 Use the Replace content feature: Let Figma’s AI generate varied entries for your design.

4.	 Review and refine: Adjust or swap out any content that doesn’t align with your intended

output.

While this feature can speed up initial design iterations, it currently lacks contextual awareness,

leading to less-than-ideal results. For more control and flexibility, dedicated plugins such as

data.to.design or Content Reel (covered in Chapter 2) provide more reliable and customizable

content generation options.

First Draft
The promise of generating entire interfaces with a simple text prompt is enticing. Figma’s First

Draft feature attempts to turn this vision into reality, though as you’ll see, the results don’t quite

match the ambition—at least not yet. However, Figma Make does a far better job at this, even

pulling from existing Figma design systems, instead of pulling the same generic UI wireframe

kit that gets on everything generated through First Draft. I’ll cover Figma Make in more detail

in the Integrating AI tools for faster prototyping section later in this chapter.

What’s the problem?
Generating a complete UI from a simple text prompt sounds like an incredible time-saver. In theory,

this feature should allow designers to move from a blank canvas to a fully designed interface

within seconds. However, after extensive testing in my online course, I found that the results were

repetitive and lacked real usability. Regardless of the input prompt—whether “Budget app,” “Bank

app,” or “Investment app”—the AI consistently produced nearly identical UI structures, heavily

featuring cryptocurrency elements such as Bitcoin. This suggests that the AI is primarily trained

on freely available Figma designs, following outdated trends rather than user needs.

Harnessing AI in Figma and Beyond58

While the idea is promising, its current execution is not practical for professional design work.

The generated outputs are more suitable for quick visual placeholders than for fully functional

products. Designing well-thought-out solutions involves more than arranging UI components—

it requires user research, problem-solving, and contextual understanding, which AI-generated

designs currently fail to deliver.

How to fix it
While Figma’s First Draft feature is not yet refined for professional workflows, here’s how you

can experiment with it effectively:

•	 Use it for ideation: Treat AI-generated designs as rough starting points rather than final

products.

•	 Refine the structure: Adjust layouts, replace irrelevant elements, and tailor components

to your specific project needs.

•	 Combine it with manual design work: Leverage AI for inspiration, but rely on human

insight for usability and UX improvements.

•	 Supplement with design libraries: If you need structured templates, consider using

curated design libraries such as Material 3 from Google, UntitledUI (which I personally

use), Figma’s built-in UI kits, community-created template libraries, or premium resources

such as UI8 or Creative Market instead of relying solely on AI-generated content.

Figure 3.3 – Three different prompts, three same results

Chapter 3 59

For now, this feature serves as a brainstorming tool rather than a reliable design assistant. However,

as AI evolves, it could become a valuable asset for accelerating initial design drafts while still

requiring human refinement.

Riffing and writing
Text is an essential part of every design. Thankfully, the days of relying on Lorem Ipsum are

over, and AI has become a powerful tool in this field. Figma offers three features to enhance text

management in design:

•	 Rewrite this…

•	 Shorten

•	 Translate to…

Rewrite this…
Text quality can make or break a design. Figma’s AI text rewriting capability helps designers

improve copy directly within their workflow, without needing to switch between different tools

or wait for copywriter feedback on every small text element.

What’s the problem?
Ensuring consistent, high-quality text across a design can be challenging, especially when

working with multiple stakeholders or large projects. Designers often struggle with refining

placeholder text into something more meaningful while maintaining tone, clarity, and branding

consistency. Without an efficient way to edit and optimize content within Figma, teams risk

spending unnecessary time rewriting copy manually.

How to fix it
Figma’s Rewrite this… feature simplifies the process by automatically refining and enhancing

text. Here’s how to make the most of it:

1.	 Insert placeholder text: Begin with a rough draft of the text you want to improve.

2.	 Select the Rewrite this… option: Let AI analyze and generate a more polished version.

3.	 Adjust for tone and context: Review and tweak the suggested copy to match the specific

brand voice and project requirements.

4.	 Use external AI for advanced editing: For complex projects, integrate tools such as

ChatGPT to train AI with specific guidelines, such as target audience, tone, and restricted

words.

Harnessing AI in Figma and Beyond60

Additionally, ChatGPT works exceptionally well with design screenshots—simply take a snapshot

of the design, provide context with placeholder text, and let AI generate refined content in seconds.

This feature enhances productivity by reducing the manual effort required to refine design copy.

Shorten
Designing for multiple languages presents unique challenges, particularly when it comes to UI

space constraints. This AI feature helps tackle text expansion issues that often arise in multilingual

designs, especially for languages that typically require more characters than English.

What’s the problem?
When designing for multiple languages, text expansion can quickly become an issue, especially in

languages such as German or Hungarian, where words tend to be significantly longer than their

English counterparts. This can cause layout breakages, misaligned elements, and readability issues.

Without a proper way to test and adjust text dynamically, designers often struggle to ensure UI

consistency across different languages.

For example, German or Hungarian text often requires more space, so shortening key labels can

prevent UI misalignment. This feature is a valuable tool for ensuring multilingual designs remain

visually consistent without excessive manual adjustments.

English German Hungarian

Login Anmelden Bejelentkezés

Accept all Alle akzeptieren Összes elfogadása

Table 3.1 – Showcase of various lengths of commonly used texts

How to fix it
Figma’s Shorten feature helps solve this problem by providing more concise text alternatives

while maintaining clarity. Here’s how to use it effectively:

1.	 Identify problematic text: Check elements where text expansion may cause layout issues.

2.	 Use the Shorten feature: Let AI generate a more compact version of the text while

preserving meaning.

3.	 Compare and adjust: Review the shortened text and ensure it fits within your design

constraints.

4.	 Test across languages: If designing for multiple languages, compare different versions

to confirm readability and alignment.

Chapter 3 61

Translate to…
Expanding your product to global markets requires effective localization tools. Figma’s translation

feature aims to integrate language conversion directly into the design process, potentially saving

rounds of back-and-forth with translation teams during the prototyping phase.

What’s the problem?
Multilingual design is a necessity for many digital products, but ensuring accurate translations

within the design workflow can be a challenge. While Figma’s Translate to… feature aims to

simplify this process, its current limitations make it less effective than dedicated translation

plugins and professional localization solutions. Not all languages are supported, meaning

designers working with less common languages may find the tool’s usefulness limited for teams

designing for global audiences. Some commonly used languages are still missing, limiting its

usefulness for teams designing for global audiences.

How to fix it
Despite its limitations, the Translate to… feature can still be useful in streamlining multilingual

design. Here’s how to maximize its effectiveness:

1.	 Check language availability: Before relying on this feature, verify whether your target

language is supported.

2.	 Use it for common languages: If your project includes widely used languages, the AI-

generated translations can speed up the initial localization process.

3.	 Integrate external tools: For unsupported languages, consider using translation APIs or

dedicated localization tools alongside Figma to ensure full coverage. Some plugins can

help you with that.

While Figma’s translation capabilities are promising, expanding language support would greatly

improve its usefulness for designers working on truly international products.

Image editing
The last group of built-in AI features focuses on image editing. There are four in total—two that

I find incredibly useful and one that frustrates me.

•	 Remove background

•	 Boost resolution

•	 Make an image

•	 Edit image

Harnessing AI in Figma and Beyond62

Remove background
Image editing was traditionally a task that required switching to dedicated software. Figma’s

background removal tool brings this essential capability directly into the design environment,

streamlining what was once a multi-step, multi-tool process.

What’s the problem?
Removing backgrounds from images has always been a tedious task for designers. Before

Figma introduced this feature, many relied on third-party tools such as remove.bg to eliminate

backgrounds with a single click. While effective, these external solutions required extra steps,

disrupting workflow efficiency. Designers needed a seamless, built-in way to remove backgrounds

without leaving Figma.

How to fix it
Figma’s Remove background feature offers a quick and efficient way to isolate subjects from their

backgrounds directly within the design tool. Here’s how to use it effectively:

1.	 Select an image: Click on the image you want to edit.

2.	 Apply the Remove background tool: Use Figma’s built-in AI to extract the subject.

Figure 3.4 – Showcase of Figma background removal

Chapter 3 63

Leverage this feature for product images, marketing banners, or UI elements where background

removal enhances the design. This streamlines workflows by eliminating the need for external

tools. If you haven’t tried it yet, I highly recommend giving it a go!

Boost resolution
Image quality issues are common when working with client-provided assets or legacy materials.

This AI enhancement feature allows designers to improve low-resolution images right within

Figma, eliminating the need for external image editing tools.

What’s the problem?
Working with low-resolution assets has always been a major challenge for me when I was

freelancing. Clients often insist on using outdated images or low-quality icons that look pixelated

and unprofessional on modern high-resolution displays. Manually enhancing these assets was

time-consuming, requiring external tools and meticulous adjustments to maintain quality without

distortion.

How to fix it
Figma’s Boost resolution feature provides a seamless way to upscale images while preserving

clarity. Here’s how to make the most of it:

1.	 Select the image: Choose the low-resolution asset you need to enhance.

2.	 Apply the Boost resolution tool: Let Figma’s AI intelligently upscale the image.

Figure 3.5 – Figma Boost resolution on an old, pixelated icon

Harnessing AI in Figma and Beyond64

If this tool had existed during my freelance years, it would have saved me countless hours. Now,

it’s an essential feature for any designer handling legacy assets or repurposing outdated graphics

for modern screens.

Make an image
AI image generation has been making waves across the design industry. Figma’s implementation

brings this capability directly into your design workflow, promising to create visuals based on

text descriptions without leaving the design environment.

What’s the problem?
AI-powered image generation promises to revolutionize design workflows by instantly creating

high-quality visuals based on text prompts. The concept is simple: type a description and AI

generates an image that seamlessly integrates into your design. However, in practice, the results

often fall short. Many of the generated images are not usable.

Despite my experience as a heavy AI user, I found this feature unreliable, producing generic

outputs that failed to meet expectations. While this tool has potential, it currently feels more

experimental than practical.

How to fix it
If you want to experiment with AI-generated images in Figma, here’s how to get the best possible

results:

1.	 Use simple, clear prompts: AI performs best with concise and specific input, so structure

your prompts carefully.

2.	 Refine the output: AI-generated images often require post-processing or manual

adjustments to fit into a design.

3.	 Combine AI with existing assets: Use AI-generated images as a starting point rather

than a final product.

4.	 Test different prompts: Small wording changes can yield significantly different results,

so experiment with variations to get closer to what you need.

Although this feature is not yet reliable for production work, I am confident that it will continue

to improve. AI image generation is evolving rapidly, and in the future, it could become an essential

tool for designers.

Chapter 3 65

Edit image
Figma’s image editing capabilities extend beyond background removal and resolution

enhancement. The Edit image feature provides additional AI-powered tools for adjusting and

modifying images directly within your design workflow.

What’s the problem?
Traditional image editing often requires switching between multiple applications, disrupting the

design flow. Whether you need to adjust lighting, change colors, or make other modifications to

images, having to jump to external photo editing software breaks your creative momentum and

adds unnecessary complexity to simple tasks.

How to fix it
Figma’s Edit image feature brings basic image editing functionality directly into the design

environment. Here’s how to make the most of it:

1.	 Select your image: Choose the image you want to modify in your Figma file.

2.	 Access edit options: Use Figma’s AI-powered editing tools to make adjustments such as

brightness, contrast, or color modifications.

3.	 Apply changes iteratively: Make incremental adjustments and preview them in real time

within your design context.

4.	 Maintain design consistency: Keep your edited images consistent with your overall design

aesthetic without losing the context of your project.

While these editing capabilities are useful for quick adjustments, they’re best suited for basic

modifications rather than complex photo manipulation. For more advanced editing needs,

dedicated image editing software may still be necessary.

Automating routine tasks with AI in Figma
Beyond Figma’s built-in AI features, there’s tremendous potential in using AI to automate

repetitive design tasks. The key is identifying which parts of your workflow can benefit from

automation without sacrificing creative control or design quality.

Harnessing AI in Figma and Beyond66

What’s the problem?
As a designer, you handle countless routine tasks daily. Over the years, as a mentor, I’ve met

individuals who dedicate their evenings and weekends to automating not just their work but

their entire lives. However, this level of thinking is rare. For the rest of you, here’s my approach

to thinking about automating routine tasks effectively.

How to fix it
To successfully automate routine tasks in Figma, follow this structured approach:

1.	 Schedule a review: Block a calendar slot every two weeks (or once a month) for two hours

to analyze your workflow.

2.	 Document repetitive tasks: Create a simple sheet or document where you log time-

consuming or repetitive tasks as you encounter them.

3.	 Log in chronological order: Write them down as they happen. If some tasks appear

multiple times, that’s a good indicator of where automation could help.

4.	 Analyze trends: During your scheduled review, assess your notes manually or with AI

tools such as ChatGPT to identify the most repetitive tasks.

5.	 Determine what can be automated: Not everything can or should be automated, but

recognize patterns where automation makes sense.

6.	 Implement and iterate: Apply automation techniques to the most frequent pain points

and refine the process in your next scheduled session.

By incorporating this method, you can gradually optimize your workflow, eliminate redundant

tasks, and free up more time for creative design work.

Integrating AI tools for faster prototyping
Not everything is possible in Figma, and sometimes it’s better to use other tools. In the past, we

would create prototypes in Figma, but now we can generate functional code in minutes.

What’s the problem?
Static designs can’t explain everything. Sometimes, for user testing or to help stakeholders

understand the concept, you need a functional prototype. Creating a fully functional prototype

can be straightforward for simple websites but extremely challenging or nearly impossible for

complex applications (especially those with interactive elements such as tables).

Chapter 3 67

The good news is that we now have AI tools that can quickly generate code from your designs. You

can publish this ready-to-use code and send it to users, stakeholders, or developers, providing a

much more interactive and realistic representation of the final product.

How to fix it
Since Config 2025, Figma has introduced Figma Make (currently in Beta), which transforms the

prototyping workflow entirely. This AI-driven “prompt-to-code” tool turns static designs or

simple text prompts into fully functional prototypes and web apps, all without leaving Figma.

Here’s how to leverage Figma Make effectively:

1.	 Start with existing designs: Copy-paste any frame from your Figma file and use natural-

language prompts such as “Make this into a login flow with email validation.”

2.	 Iterate conversationally: Point at parts of the preview to tweak padding, replace assets,

or adjust interactions—all through chat-based commands.

3.	 Publish instantly: One-click publish to a live URL for immediate stakeholder testing and

feedback.

Here are some current limitations to consider:

•	 Framework gaps: Outputs vanilla HTML/CSS/JavaScript rather than React or Vue

components

•	 Beta maturity: May have occasional UI quirks or imperfect CSS outputs

•	 Limited backend scope: Focused on frontend prototypes (though Supabase integration

is coming soon)

Alternative tools for specific needs
While Figma Make covers most prototyping needs within Figma, external tools still offer unique

advantages for specific situations:

•	 lovable.dev – best for full stack applications:

•	 Provides an integrated Supabase backend, GitHub, and Vercel deployment

•	 Outputs React code you can deploy immediately

•	 Offers fine-grained Select & Edit UI tweaks

•	 Trade-off: Requires leaving Figma, and code quality may need manual cleanup

Harnessing AI in Figma and Beyond68

•	 v0.dev – best for React ecosystem projects:

•	 Deep integration with Vercel infrastructure

•	 Outputs React/Next.js + Tailwind + shadcn/UI components

•	 Strong developer controls over deployment

•	 Trade-off: Focuses specifically on the React ecosystem rather than generic solutions

Tips for success with any tool
Regardless of which tool you choose, these tips will improve your results:

•	 Provide comprehensive information upfront: Give a complete picture of what you want

to build rather than starting with minimal prompts and adding details later.

•	 Leverage complementary AI tools: When code generation tools create bugs they can’t

fix, sync the code with GitHub and use ChatGPT or Claude to resolve issues.

•	 Don’t hesitate to start fresh: If your project isn’t progressing, restart with an updated

prompt that incorporates lessons learned along the way.

Implementing AI into your design workflow
While integrating AI as an individual designer is relatively straightforward, rolling out AI tools

across an entire team requires a more structured approach. Success depends not just on the

technology itself, but on how thoughtfully you introduce these new capabilities to your colleagues.

What’s the problem?
Implementing AI into your design workflow is straightforward when working alone, but

introducing AI across a team of designers and developers can be much more complex. Different

team members have different needs, levels of experience, and concerns about AI’s role in their

work. While we’ve already covered how to use AI to automate individual tasks in Automating

routine tasks with AI in Figma, this section focuses on integrating AI across an entire team workflow

to improve efficiency and collaboration.

How to fix it
Approach this as you would any other design problem—treat it like a structured project with

clear requirements and solutions. Here’s a step-by-step guide to successfully implementing AI

across your design team:

Chapter 3 69

1.	 Define your target audience: Before implementing AI, understand who it will affect.

Are you introducing AI to a small team of designers, or are you rolling it out to dozens of

developers and product managers? Identifying your audience helps you craft a strategy

that resonates with them and meets their specific needs.

2.	 Find an ambassador: Once you’ve identified your target audience, recruit an ambassador

from each key group (e.g., designers, developers, marketing, or content). While you

may lead the initiative, having a trusted advocate within each discipline ensures better

adoption. For example, if you want developers to embrace AI, having a developer champion

the cause will make communication and adoption smoother.

3.	 Identify pain points: AI should be a solution to real problems, not just a trendy addition.

Identify pain points by talking to your team and gathering insights. Keep in mind that

some pain points will originate from management rather than the team itself. For instance,

leadership may push for faster delivery, but designers and developers may not see this

as a personal issue.

4.	 Workshop the strategy: In Dotidot, we’ve eliminated most unnecessary meetings, keeping

schedules clear for focused work. However, a well-structured workshop can be incredibly

effective in defining an AI implementation strategy. Gather the ambassadors and key

stakeholders, walk them through the identified problems, and guide them toward defining

solutions themselves. A well-run workshop will lead to stronger buy-in and a more tailored

strategy.

5.	 Create a clear, concise plan: After the workshop, document the findings in a simple, one-

or two-page document outlining the following:

•	 The target group

•	 The specific problems they face

•	 How AI can address these problems

•	 Clear steps for implementation

6.	 Run a pilot program: Start with a pilot program rather than a full rollout. Set a strict

evaluation deadline to assess whether the AI integration is actually improving workflows.

Make it clear to the team that this isn’t an after-hours side project—it’s a structured

initiative designed to improve efficiency and design quality.

By treating AI integration as a design challenge, rather than a forced technological shift, you can

ensure smoother adoption, better team engagement, and ultimately, more impactful results in

your design workflow.

Harnessing AI in Figma and Beyond70

Not every team or individual will immediately embrace these changes, and that’s exactly why

Ambassadors play a crucial role. If you’re implementing improvements across multiple teams,

begin with the most receptive group to build a strong, data-backed case for management. Ideally,

every change would organically emerge from individual team members, but in reality, that’s not

always how things work. A solid proof of concept enables you to approach management and

implement changes from the top down when necessary.

Analyzing AI-enhanced design workflows—case
studies
At Dotidot, we’re a small team that implemented AI in our design processes not as a trend, but as

a necessity to work smarter and faster. I’d like to share three key use cases where we’ve trained

ChatGPT to enhance our daily design workflows:

Marketing specialist assistant
This AI assistant embodies our target persona—automation strategists who work closely with

clients to implement complex automation strategies. These specialists have limited availability

but possess invaluable market knowledge that designers occasionally need to tap into.

Our actual marketing specialists use Dotidot for several hours daily to configure client setups. Since

we make nearly all functions accessible to users, these power users have a deep understanding of

the product experience. The AI assistant helps bridge the gap when the human specialists aren’t

available, allowing designers to get a perspective on user needs and market-specific knowledge

without scheduling additional meetings.

UX writer assistant
As a B2B application, Dotidot contains numerous complex elements that require precise, clear

wording. While we have an excellent UX writer on staff, their limited bandwidth meant they

couldn’t address every small copy request.

Our human UX writer became an excellent “teacher” for the AI assistant, continually helping us

refine its capabilities. The assistant now handles routine copy tasks while maintaining our voice

and standards, freeing our UX writer to focus on more strategic communication challenges and

complex features.

Chapter 3 71

Marketing content assistant
At Dotidot, our product team is also responsible for in-app marketing materials such as promotional

banners, information boxes, and feature announcements. We trained a specialized AI assistant

specifically for creating marketing copy that aligns with our brand voice.

This enables designers to simultaneously develop both the feature and its supporting marketing

assets. Since the designers have the deepest knowledge of the new functionality, this integrated

approach ensures marketing content accurately reflects the feature’s capabilities and benefits

while maintaining consistency across the product.

Navigating ethical challenges in AI-driven design
If you’re a hardcore Figma user, you might remember when Figma announced the Make Design

AI feature at Config 2024—only to pull it back within days after users noticed it generated designs

strikingly similar to popular apps. I won’t go too deep into this, but Figma claimed they didn’t

train the model on past Figma designs. Still, as a product person, I find it hard to believe that

using existing Figma data wouldn’t have been the logical starting point.

AI doesn’t generate ideas from thin air—it builds on the data it’s trained with. How much we

integrate AI into our design process is a decision each of us has to make. For example, I see

renaming layers as a no-brainer; it saves time without compromising creativity. However, using AI

to generate the first version of an app design? That’s where I draw the line. It may not be outright

unethical, but it fundamentally changes the craft of design, replacing thoughtful decision-making

with patterns pulled from who knows where on the internet.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before

you start.

packtpub.com/unlock
packtpub.com/unlock

4
Enhancing Designer-Developer
Synergy

As I discussed in previous chapters, successful collaboration between design and development

teams should be a top priority if you want to optimize your processes and delivery speed. I’ve

already mentioned some techniques, such as screen annotations, but in this chapter, we’ll dive

much deeper into bridging the gap between these two disciplines.

Every organization faces collaboration challenges, whether they’re actively working to improve

them or haven’t addressed them yet. The approaches that work best depend heavily on your spe-

cific situation—business size, team maturity, whether teams are co-located or distributed, and

even company culture (some lean more toward development, others toward design). There’s no

universal solution, but there are proven strategies you can adapt to your context.

We’ll explore the following:

•	 Structuring design files for developer accessibility

•	 Creating interactive prototypes for developers

•	 Streamlining designer-developer communication

•	 Aligning design goals with development objectives

•	 Leveraging Figma’s Dev Mode

Enhancing Designer-Developer Synergy74

Structuring design files for developer accessibility
Design files can quickly become a mess. While it’s much better now than in the past—thanks to

Figma’s AI search feature that I explained in Chapter 3—finding specific elements is easier, but

proper file organization should still be a fundamental part of your design process.

What’s the problem?
Imagine you’re in a new grocery store where everything is placed randomly. Next to milk are

apples, next to those is orange juice, but the apple juice is on the other side of the store next to

the shoes. That sounds crazy, but if you built that store yourself, you’d be fine with it. After all,

you know where the apple juice is, right?

This is just an example, but many Figma files look exactly like that, and developers are the new

shoppers in your store. If you spent the last week working on a file, you might think everything

is in its place, but take another look. Would you be able to find everything after 3 months? That’s

a good exercise—try opening a 3–6-month-old file and see if you can immediately tell what the

file is about and whether it contains everything developers need.

If developers are lost from the first minute of working with your file, they won’t think highly of you

or your design team. First impressions matter, and a well-organized file signals professionalism

and consideration for your development partners.

This organization becomes even more critical when you’re trying to scale—not just files, but entire

design teams. The easier your files are to navigate for anyone, the easier they are to use and grow

for everyone. When your team expands from 2 designers to 10, or when you need to onboard new

developers quickly, clear organization becomes the foundation that allows your design system

and processes to scale effectively.

How to fix it
I want to explain three possible solutions. All of them are viable, and the best choice depends on

your situation and Figma plan:

•	 Quarterly files

•	 Project files

•	 Branching

Chapter 4 75

Time-period files (quarterly files)
We started with this approach at Dotidot a few quarters ago, but you can adapt the time period

to fit your company’s workflow—some teams use monthly files, others prefer quarterly cycles.

Our problem was that our Figma files didn’t reflect reality—the production version of our app.

When we worked on our application files, developers often didn’t know which was the produc-

tion version and which was the new design. It was communication ping-pong that led to a lot of

confusion and forgotten changes.

So, we implemented quarterly files. We have two main groups of files in Figma:

•	 Our application files (such as user dashboard, settings, product pages, checkout flow,

etc.): In these files, we have the latest version of the production design for these parts of

our app. When you want to start making changes to campaigns, you know that everything

there is on production 1:1, so it’s easy to start.

Figure 4.1 – Preview of all our application files

Enhancing Designer-Developer Synergy76

•	 Our quarterly files: One file per quarter, where each page is one ticket. We have all the

tickets below each other, with each page containing a Jira widget that links to the corre-

sponding ticket (if you want to know more, just check out Chapter 2, about plugins). Some

pages are only one frame, some are huge, but everyone knows that each page represents

a live ticket. When the ticket is released, you can see the updated status in the widget—

though you’ll need to click the Update button to refresh the information, which can be a

bit annoying but it’s a small detail in an otherwise smooth workflow.

Figure 4.2 – Preview of our quarterly files

At the end of the quarter, designers take all of the changes from the quarterly file that are in

production (live) and implement them in the application files. This ensures that if you want to

start making changes to something, you can start with the production version files. We leave the

pages in the quarterly files and add a redirect to the application files, so you can always find the

designs from links in Jira, Slack, and so on. This is crucial—don’t delete the pages or files. The

tickets that aren’t completed stay in the quarterly file and are moved when they’re in production.

This approach works great for smaller teams like ours because everything is clear, and it’s super

easy to explore ideas, even for product people, not just designers. Developers know that every-

thing in the quarterly files is in one place, so they don’t need to have dozens of files open—just

one for the whole quarter.

Project files
This is ideal for mid-size teams that are working on multiple projects at once or agencies. You

can duplicate the file structure for each project and then build in it. The fixed structure across

projects will help designers, developers, and everyone else in the company know where they can

find something, even across projects or clients. The structure is always the same, and you just

delete the parts that you don’t need.

I used this approach in the past as a contractor, and it helped me deliver projects with very

high-standard handoffs, fast and easily.

Chapter 4 77

Figure 4.3 – Figma project file pages structure

Now I want to share my file structure and explain why I have certain elements in it. You can copy

it directly or adapt it based on your specific needs.

My standard file structure
01 - Getting started
This is the landing page with all essential project information:

•	 Team members and contact details

•	 Project goals and timeline

•	 Resource downloads (fonts, assets)

•	 Links to relevant documents

•	 Client information

Enhancing Designer-Developer Synergy78

This page opens automatically when the file is first accessed.

02 - Project name
This is organized by logical sections of the product:

•	 For an e-commerce site: Homepage, Product Listings, Product Detail, Checkout

Each section gets its own dedicated page with all related screens.

03 - Documentation
This includes everything related to project requirements and references:

•	 Detailed project briefs and requirements with my notes

•	 Research findings

•	 Mood boards and inspiration

•	 Meeting notes

•	 User personas

Keeping this in Figma eliminates the need to search through emails.

04 - Components
•	 Local component library (when not using a design system)

•	 Component documentation

05 - Playground and exploration
There’s space for experimentation here:

•	 Design explorations

•	 Alternative approaches

•	 Work-in-progress ideas

•	 Testing and iterations

06 - Archive
This is a repository for outdated but potentially useful designs:

•	 Previous versions

•	 Unused concepts

•	 Discarded approaches

Chapter 4 79

Never delete work that might be valuable later.

07 - Cover
This is the professional project entry point:

•	 Project name and client

•	 Timeline and status

•	 Team members

•	 Brief description

A well-designed cover creates a professional first impression.

This unchangeable structure helped me easily duplicate the file and start a new project quickly

(Figma link – project template structure: https://www.figma.com/design/

ZbHJ6n1slhkQYj0INDk3Vq/-TEMPLATE--Design-file?node-id=1-9&t=Frtj3FV4zVhBRQf7-1).

Developers that I worked with were happy that every project had the same structure, and they

knew where to find what they needed.

Branching
For teams with Organization or Enterprise Figma plans working on large, complex files, branching

offers a third approach to file organization that mirrors developer workflows. While I covered the

technical aspects of branching in Chapter 1, it’s worth considering how this feature can enhance

your file structure strategy.

Branching allows you to create separate versions of your design files for experimentation and

iteration without affecting the main production file. This is particularly valuable when multiple

designers are working on the same project simultaneously, or when you need to explore different

design directions while keeping the main file stable for developer handoff.

If your team is already familiar with Git branching from the development side, implementing a

similar approach in Figma can create consistency across your entire workflow. Consider speaking

with your tech lead about how they use branching in code—this understanding can help you

implement a parallel structure in your design files that developers will immediately recognize

and appreciate.

.

https://www.figma.com/design/ZbHJ6n1slhkQYj0INDk3Vq/-TEMPLATE--Design-file?node-id=1-9&t=Frtj3FV4zVhBRQf7-1
https://www.figma.com/design/ZbHJ6n1slhkQYj0INDk3Vq/-TEMPLATE--Design-file?node-id=1-9&t=Frtj3FV4zVhBRQf7-1

Enhancing Designer-Developer Synergy80

Creating interactive prototypes for developers
Preparing an interactive prototype for developers can be fun, but first, really speak with them to

find out whether they’ll actually use it. I’ve met many designers who prepared elaborate prototypes

that developers never used—they didn’t even know how to run a prototype in Figma. Prototyping

can be a powerful tool, but if the other side won’t even run it, you’re wasting your time.

What’s the problem?
With complex flows or specific interactions, you need to give developers more than just a few

frames next to each other with amazing annotations. You need to give them something clickable

with proper transitions (and animations) for them to understand the goal that you want them

to achieve.

But remember, prototypes are just one piece of the puzzle. Developers also need access to all

component variants and states, whether in the prototype itself or the design file. Don’t make them

guess what the hover state of a button looks like or how an active focus state appears. Include

links to design libraries, embed necessary assets directly in the file, and always follow up with a

proper handover meeting where you can walk through the prototype together.

How to fix it
I’ll start with the fastest and most “uncool” way: record a video with an explanation or showcase

an example from somewhere else. Yes, this is the fastest way to do it, and in many cases, it’s good

enough. You can try to recreate some animation in Figma, but why bother if you can find the

same one on CodePen and just record a short video with an explanation and link? All of this can

be done in Loom and placed next to the design. Your time is valuable and probably expensive.

Think about it. I know the C-level manager in me is speaking now, not the designer, but it will

be okay. Trust me.

Chapter 4 81

Figure 4.4 – CodePen showcase of drag and drop behavior

If you want to do it properly, you need to sit with developers and talk about the appropriate scope.

Prototyping, like many things, isn’t a Yes or No question—it’s a scale of How much?

Creating a simple hover effect for buttons takes about 30 seconds in Figma, but creating a proto-

type of a table where you can add columns, rearrange them, and change values could take your

whole lifetime. That’s why you need to have a clear understanding of what’s enough to convey

the proper message, because beyond a certain point, more time won’t give you better results.

So, simply speaking, you should do the following:

1.	 Talk with developers to find out whether they even need prototypes

2.	 Try to show interactions through examples with videos

3.	 Do as little as possible to transfer the message effectively

Quick tip—create user flow blueprints for maximum impact
While prototypes show how individual interactions work, developers often need to see the bigger

picture first. Consider creating user flow diagrams that serve as blueprints – visual maps showing

the complete user journey with final design screens attached to each step.

Enhancing Designer-Developer Synergy82

This approach works incredibly well because developers can quickly understand the entire solu-

tion before diving into specific screens. Combine user flows with prototypes and intro recordings,

and it works like magic. The bonus? These flow blueprints also become invaluable for product

managers during feature planning and QA teams when debugging issues.

Start with the flow, then add the prototype details. Think of it as giving developers a roadmap

before asking them to build the individual roads.

Streamlining designer-developer communication
Communication is everything in every relationship, even between designers and developers.

What’s the problem?
As I showed you earlier, designers and developers can both be speaking English but still not un-

derstand each other. These are different worlds, and we should spend more time in the developer’s

world to understand it better. But if you want to improve communication between you and your

development team, I’ll add some new tips.

How to fix it
Proper channels on Slack or in Teams are must-haves—every project should have one with a

proper description and linked files. All project updates should be communicated there with proper

links to Figma. Try to communicate only the necessary info and always use threads to go deeper.

Think about the search functionality in Slack, for example. You should be able to search quickly

in the channel, so try to use headings for the start of announcements. Also, you can pin the main

messages to the channel.

Figure 4.5 – Slack message at the start of our project

Chapter 4 83

Try to go deeper into your communication tool’s capabilities. At Dotidot, we use Slack, and we’ve

found that many people don’t understand its more advanced features beyond simple messages.

Most team members don’t have a proper workflow for how to use Slack effectively. That’s why

whenever a new team member joins, we always share our communication rules with them.

Remember, Slack isn’t your personal messaging platform where you chat casually with family

and friends, but many people use it the same way. This approach can cause problems in profes-

sional communication, especially between design and development teams. Here are some rules

that you should follow:

•	 Always use headings for new topics or announcements. This makes messages scanna-

ble and searchable. Add an emoji at the beginning that reflects what’s expected: 📣 for

announcements, 🤔 for brainstorms and ideas, 👓 for design reviews, 🚧 for work in

progress (sneak peeks).

•	 Always communicate in threads below the original message; never start a new message

to continue a conversation. This keeps discussions organized, unlike WhatsApp and other

consumer apps.

•	 Use the checkmark emoji ✅ to indicate when an issue is resolved. This visual cue helps

everyone know what’s still pending and what’s completed.

•	 If you need something by a specific date, put this information at the beginning of your

message with a calendar emoji 📅. This makes deadlines immediately visible.

•	 If you expect an answer from someone, mention them directly. Don’t use @channel or

leave messages without specific mentions, as this can lead to diffused responsibility.

•	 All Slack messages should be acknowledged by the end of the day. Never leave messages

unanswered. Even a simple “I’ll look into this on Thursday” is better than silence. Always

communicate that you’ve seen the message and have a plan to address it.

•	 Always embed links within relevant words rather than pasting the entire URL. For example,

write “Check the Figma design” or “Details in the Jira ticket” instead of dropping long,

messy URLs into the conversation.

Quick tip—create communication cheat sheets for your team
Since communication guidelines can be repetitive to explain to new team members, consider

documenting your team’s communication standards in a dedicated space such as Confluence.

Even better, create a small cheat sheet that becomes part of your project file template.

Enhancing Designer-Developer Synergy84

Make this cheat sheet specific and actionable – include guidelines for design reviews (what a

good critique looks like), handover protocols (a combination of emojis, when to ask questions,

where to post them), and team-specific communication standards. The real magic happens when

you turn this cheat sheet into a Figma component that can be easily updated across all project

files. Update it once, and every project automatically gets the latest communication guidelines.

This approach ensures consistency across projects and makes onboarding new team members

much smoother.

Aligning design goals with development objectives
Even when designers and developers work on the same project with the same deadline, they often

approach problems from completely different angles. This difference in perspective can lead to

friction, misunderstandings, and solutions that don’t fully serve either the user experience or

technical requirements. The key is learning how to bridge these different approaches and create

a collaborative environment where both perspectives strengthen the final outcome.

What’s the problem?
For example, your overall goal might be to lower the drop-off rate in your application’s onboard-

ing process. Both designers and developers want this outcome, but will approach it differently.

Developers will focus on aspects they can optimize, such as loading speed for certain steps in your

onboarding flow. There are many studies that tie bounce rates (users exiting) directly to page

speed. Designers, on the other hand, might focus on removing unnecessary steps to streamline

the whole process.

You see? Both teams will work on completely different aspects, but they have the same underlying

goal. That’s why alignment is crucial.

How to fix it
I have multiple recommendations—go through them and pick the ones suitable for your situation:

•	 Understand different goals and plan around them. In some teams I mentor, they didn’t

even talk between departments or share goals. The teams worked in silos, which had a

huge impact on the final result. So, ask questions and talk openly. If you’re in the office,

grab lunch with developers—it’s much better than a formal meeting. As a designer, you

should have some basic knowledge of research methodology. Use it during these informal

conversations to learn more about their perspective.

Chapter 4 85

•	 Involve developers as early as possible in the process. You want their feedback to help

build a better product. Find developers who are happy to join the project early and share

their opinions. Be aware that this should focus on the project in general, not just your

design work. Sometimes you’ll receive feedback that’s purely about aesthetics rather than

implementation, which isn’t always helpful.

This approach aligns with product trios, where a product manager, designer, and tech

lead work closely together throughout the entire product development cycle. I’m a big

believer in product trios and love this collaborative model, but in many cases, this isn’t

how organizations actually work. If you have a team where everyone wants to be involved

and collaborate closely, push for implementing product trios. Teams that adopt this ap-

proach often see significantly better outcomes and fewer misalignments between design

intent and final implementation.

•	 Be open to trade-offs, but ensure both sides are ready for this too. In the past, at Dotidot,

we had a problem where design was always secondary to development’s “how to do

it as fast as possible” approach. There weren’t true trade-offs—just the elimination of

proper solutions in the name of speed. Often, the final result wasn’t viable because we

cut so many corners that users couldn’t properly use the app. Trade-offs need to happen

through discussion between equal partners. Neither designers nor developers are more

important; your users and business goals should come first.

When I was discussing this chapter with my beta reader, they suggested an interesting

change of perspective that I hadn’t considered before. They pointed out that many engi-

neering teams are very sensitive to technical debt (whether it’s increasing or reducing) or

are keen on exploring new technologies and trends. Their suggestion was that building

your trade-offs around supporting technical debt reduction or incorporating learning

opportunities for new tech can be a way to achieve better outcomes for everyone.

•	 Be aware of past technical limitations (tech debt). This can be challenging for new design-

ers or on new projects because people who have been with the company for some time

often assume “everyone knows that.” But many of these constraints aren’t documented

anywhere, so you need to explicitly ask about them.

For example, you could propose a smooth animated transition between screens, but the

existing navigation framework makes this technically impossible without rebuilding part

of the system. These kinds of limitations significantly impact what you can design, but

they’re rarely written down anywhere.

Enhancing Designer-Developer Synergy86

•	 Establish shared naming conventions. I’ve mentioned this in previous chapters, but it

bears repeating: you need to use the same terminology to understand each other. When

designers talk about “cards” and developers call them “containers,” miscommunication

is inevitable.

Leveraging Figma’s Dev Mode
Figma’s Dev Mode is a powerful tool designed specifically to bridge the gap between designers

and developers, yet many teams aren’t taking full advantage of it. This feature transforms how

developers interact with design files, but it requires both understanding and proper implemen-

tation to realize its benefits.

What’s the problem?
Despite its potential, Dev Mode remains underutilized across many teams. The most common

objection I hear is price—something I find perplexing. Dev Mode costs just a few dollars per

month, while developer salaries in my region range from $4,000-8,000 per month—not including

additional company costs. If you’re in the United States, developer salaries are likely even higher,

so a few dollars shouldn’t be an obstacle to efficiency.

Beyond cost concerns, there’s often a knowledge gap. Many teams simply don’t understand

what Dev Mode offers or how to integrate it into their workflow. This means they continue using

less efficient methods for design handoff, costing valuable development time and introducing

opportunities for misinterpretation.

How to fix it
Here are some amazing features that Dev Mode provides and how to leverage them effectively.

Reading tokens and variables made simple
One of the biggest sources of implementation errors comes from developers trying to guess or

manually measure design values. In a regular Figma view, a developer might see a button and try

to estimate its padding, border radius, or color values. This leads to inconsistencies and time-con-

suming back-and-forth communication.

Dev Mode solves this by displaying exact token values directly. When a developer clicks on any

element, they immediately see the precise measurements, color hex codes, font sizes, and spacing

values. If you’re using Figma’s variables feature for your design tokens, developers can see the

variable names directly, making it easy to map design decisions to code implementations.

Chapter 4 87

Use case
Instead of a developer asking “What’s a text color?” or trying to eyeball measurements, they can

instantly see “color/theme/text/default” and know exactly which design token to use in their code.

Figure 4.6 – You can easily see the token/variable name for every element

Component playground for better understanding
The component playground is like a sandbox where developers can interact with your components

without worrying about breaking anything in your design file. This feature shows all available

variants, properties, and states of a component in one organized view.

When you create components with multiple variants (such as different button sizes, states, or

styles), the playground displays them all systematically. Developers can click through different

combinations to understand how the component should behave in various scenarios. This is

especially valuable for complex components with multiple properties.

Enhancing Designer-Developer Synergy88

Use case
A button component might have variants for different states (default, hover, disabled) and config-

urations (with icon at start, with icon at end, text only). Instead of hunting through your design

file for examples of each combination, developers can see all possibilities organized in the play-

ground and understand how the button should behave with different icon placements and states.

Figure 4.7 – Every component has this robust playground that you can use to test everything

Chapter 4 89

Comparing changes efficiently
Design iteration is natural, but communicating changes to developers can be challenging. Tradi-

tionally, designers would take screenshots, draw circles around changes, or write long descriptions

trying to explain what’s different between versions.

Dev Mode’s Compare feature shows design iterations side by side automatically. Developers

can see exactly what changed between versions without needing detective skills. The system

highlights differences visually, making it immediately clear what needs to be updated in the code.

Use case
If you update a card component’s spacing and add a new icon, developers can see both changes

highlighted in the comparison view instead of trying to spot differences themselves or waiting

for you to explain what changed.

Figure 4.8 – You can see all changes in one place

The Ready for Dev filter keeps everyone focused
One of the biggest frustrations for developers is not knowing which designs are final and which

are still being explored. They might spend time implementing something that’s actually just a

rough concept, or they might avoid implementing something that’s actually ready to go.

Enhancing Designer-Developer Synergy90

The Ready for dev filter solves this by showing developers only the designs you’ve marked as

finalized. When they switch to Dev Mode, they primarily see production-ready designs rather

than getting distracted by work-in-progress explorations. This keeps development focused on

the right priorities.

Use case
During an active design sprint, you might have 20 different screens in various stages. Instead of

developers wondering which version of the checkout flow to implement, they can filter to see

only the designs marked Ready for dev and know exactly what to build.

Figure 4.9 – Section with Ready for Dev status

Code Connect bridges the final gap
This is one of the most powerful features for bridging design and development, and the major

feature that I push teams to upgrade from the Professional to Organization plan for. Code Con-

nect allows you to link your actual production component code directly to Figma components,

creating a seamless connection between design and implementation.

Chapter 4 91

How it works
Developers can select any component instance in your design and immediately see the exact

code needed to implement it, including all the correct props, variants, and configurations. For

example, if you have a button with specific styling, size, and an icon, Code Connect will show

the developer the exact React component code (or whatever framework you’re using) with all

the right parameters already filled in.

The setup requires some initial work from your development team to connect the code repository

to Figma, but once it’s configured, it eliminates the guesswork entirely. Developers no longer need

to interpret design specs or figure out which props to use—they can simply copy the pre-config-

ured code directly from Figma.

Use case
A developer sees a complex data visualization component in your design. Instead of trying to

recreate it from scratch or asking multiple questions about implementation details, they click

on it and get the exact code: <Chart type="bar" data={salesData} colors={['primary',

'secondary']} showLegend={true} />. The efficiency gains and reduction in design-develop-

ment miscommunication make the plan upgrade cost negligible compared to the time saved.

Figure 4.10 – Connect your production code with Figma

Enhancing Designer-Developer Synergy92

Dev Mode is continuously being improved—funny name considering it’s always in development

itself. New features might be available now or coming soon that could help your workflow even

more. Just grab a coffee and spend an afternoon exploring it. The time investment will pay off

significantly in smoother designer-developer collaboration.

Quick tip—become the Dev Mode educator
Designers often know more about changes and updates in Dev Mode than developers because

Figma is still primarily a design tool. Don’t skip the dev announcements at Config and other Fig-

ma announcements. Take the role of educator on yourself if needed, and teach your developers

about new features, tips, and tricks. You’ll likely be the first to discover useful updates that could

improve your collaboration, so share that knowledge proactively with your development team.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before you

start.

packtpub.com/unlock
packtpub.com/unlock

5
Scaling Design Systems for
Consistency

Design systems have been a hot topic for the past few years—perhaps even hotter than AI, but jokes

aside, many designers mistakenly believe that design systems are a creation of Figma. They’re not.

Systems have been with us forever. We naturally look for ways to structure our work and establish

rules that help us move faster. Components and systems have existed in the development world

for decades, and I’m thrilled that designers, with encouragement from companies such as Figma,

are now investing (not spending, but truly investing) time in design systems.

In this chapter, I’ll share insights from my experience building design systems of all sizes—from

small ones for one-time projects to massive systems for multinational corporations. A design

system isn’t a binary yes-or-no question; it’s a spectrum. The real question is: how much do you

want to invest to make that investment worthwhile? We’ll explore six key topics:

•	 Design system creation planning

•	 Building advanced component libraries

•	 Ensuring systematic documentation and standards

•	 Managing design systems for growing teams

•	 Utilizing Figma’s design system tools

•	 Dynamic system scaling to accommodate product iterations

Let’s start with the first topic.

Scaling Design Systems for Consistency94

Design system creation planning
Building a design system can be challenging. Where do you start, and what is enough? When you

look at established design systems such as Atlassian Design System, Shopify’s Polaris, or IBM’s

Carbon, you see massive libraries with dozens of components, each with numerous variants and

states. This can be intimidating—and honestly, it is—but it’s wrong to use these as your bench-

mark. These systems were built by teams of designers over many years. If you’re just starting or

looking to invest more time in your design system, view these examples as inspiration, not as

requirements.

What’s the problem?
Many teams dive into building components without proper planning, only to realize later that

their system doesn’t meet actual needs or lacks scalability. Without a strategic approach, you risk

creating something that looks impressive but doesn’t serve your organization’s unique require-

ments. The most beautiful design system is worthless if it doesn’t solve real problems for your team.

When mentoring teams that are beginning with design systems, I always recommend checking

established systems for inspiration and as external validation of your thinking about structure

and naming—not as a direct template to copy. It’s like looking at marathon runners before your

first jog outside. They’re good for inspiration and validating your approach, but not as a bench-

mark for where you should be.

Important exception

This advice works well when you’re starting fresh. But I’ve seen a different scenario many times—when

you join a company where the development team has already been using component libraries for

months or years. In this situation, your strategy should flip completely. Instead of building something

new, look for design systems that mirror what developers are already using. Libraries such as Shadcn

and UntitledUI often have Figma counterparts, and using them can save you months of work while

ensuring perfect alignment between design and code from day one.

The real challenge is building a good enough component library with the right level of complexity,

something that serves your current needs while allowing for growth, without overengineering.

Chapter 5 95

How to fix it
Before you start building, you need to sit and plan. I know—building is much more fun, but plan-

ning is essential. When building design systems, we always ask questions such as the following:

•	 What is the goal of the design system?

•	 Where will the system be used?

•	 How much time (and money) do we have?

•	 Do we have any historic systems to build from?

•	 Can we use something pre-built?

•	 Are there technical limitations to consider?

•	 Do we have time to work on it consistently?

•	 Who will be using the design system?

•	 How many designers will work with it?

•	 How often do we need to onboard new people?

•	 How many developers will work with it?

These are key questions that everyone should answer. Let’s examine them one by one.

What is the goal of the design system?
A simple question, right? But you can spend a lot of time on it. It’s very important to speak with

all stakeholders about this topic because I can guarantee there will be multiple perspectives. Let

me share two real-world cases from completely different environments: one from my start-up

Dotidot—a fast-moving company with a small team and limited resources—and another from a

large multinational corporation with significantly more time, people, and budget at their disposal.

These contrasting examples will show how the same fundamental question leads to different

approaches based on context.

Dotidot case
At Dotidot, the main push came from me and other designers. Our primary motivation was to

reduce delivery time—which is one of the main reasons why design systems are built in the first

place. We built our design system to completely skip wireframing and create designs in their final

form from the start. This cut our time significantly (approximately 30-50% for many features).

Another motivation was to make our lives in Figma much easier. Consistency was also important,

but honestly, it wasn’t our main driver.

Scaling Design Systems for Consistency96

Dotidot has significant technical debt—it’s a 10-year-old start-up, and you can see it in the code

base. Not every component in our design system is fully implemented, and many components

exist in two variants: React and Ruby on Rails. These components often look similar but work

differently, so you might use one component in Figma, but in the products, it can appear different

on each page. This is our reality. Our goal is to eventually have a fully developed design system,

but that’s still in our future.

Multinational company case
This company had never had a design system and started building one alongside a new internal

system. With hundreds of people working on it, they invited me as an interim leader to build

both the system and the team around it. They faced a completely different problem: many devel-

opment teams were building the same components repeatedly—similar but different—because

no one spent time building them properly with all features. Each team built minimal versions

of components only for their specific use, which meant other teams couldn’t reuse them due to

unfamiliarity with the code base and missing functionality.

This approach was incredibly expensive, so the main problems their design system needed to

solve were cost reduction, increased development speed, and improved component UX. With

a proper system, their UX team could invest time in user testing each component and optimize

them much more effectively than before.

As you can see, they’re two companies with two entirely different worlds. It’s crucial to think

about your specific goals because everything else will be built on the foundation of this question.

Where will the system be used?
Your design system can be used in many places, some of which might not be obvious initially.

When I ask “where?” I mean across different platforms (website versus app, iOS versus Android),

different contexts (desktop versus mobile), different brands (Brand A versus Brand B), or even

different company divisions. For example, with Figma Slides, you can easily use your components

in presentations as well. A small use case? Sure, but it’s amazing to have consistency and speed

(since you already know the components) with this approach.

My main point is about anticipating future use cases. For instance, sometimes you build your

system for your app, and then the marketing team realizes it’s awesome and wants to use it on

the website as well. Knowing these possibilities in advance is very important because then you

can structure your system properly. For example, you might create one file with foundations

(tokens/variables) and separate files with components for your app and website.

Chapter 5 97

Dotidot case
In our start-up, the use case is straightforward—we use the design system exclusively for our web

application. Our marketing website has its own system, and it only shares foundations (colors,

fonts, etc.) with the main product.

Multinational company case
Here, the situation is much more complex. The system is used across multiple subsidiaries under

the parent company. They need the same system but must brand it differently across the daughter

companies—what we call theming in the design and developer world— so employees find it

familiar and contextually appropriate. They also need to share foundations with external agencies

working on marketing websites and landing pages, and they need to integrate new components

into legacy systems that aren’t being fully updated.

How much time (and money) do we have?
Let’s be honest—we would love to polish everything to 100%. We’re designers; it’s in our blood.

When I switched from design to C-level management, this was one of the hardest mindset shifts.

It’s not that I don’t want to invest time in our design system, but sometimes we need to build

something more important for the company.

You need to know how much time you can invest. Based on this, you can plan effectively. Do

you have only a week to build solid foundations? Great—your process and scope will look very

different than if you have a year. This is why it’s sometimes challenging for new teams that look

at Polaris or Carbon as inspiration; they see Mount Everest before them when they only have

time for a quick hike. Understanding your time constraints helps you use that time efficiently.

Another challenge can be that you’ll seemingly be working on it “all the time,” and your stakehold-

ers may grow tired of hearing about it repeatedly. In bigger teams, you’ll have dedicated people

working on design systems, but in smaller ones, this can be a real challenge.

Dotidot case
This was a problem at Dotidot, before I switched from design. We needed to work on our design

system, but it wasn’t a priority, so we often talked about it, and the C-level executives thought

we were investing a lot of time in it. In reality, we were only investing mental time—thinking

about it during dog walks—not actual design time building it.

Scaling Design Systems for Consistency98

That’s why my first project when I became CPO was to dedicate 14 days to build the entire system

for designers (development isn’t finished yet), and we did it. We had spent so much free time

thinking about it that we had clarity on what to build, so 14 dedicated days were enough.

Plan your time responsibly. If you have only a small window, as we had at Dotidot, consider

putting one designer in “vacation mode”—no meetings, no other tickets, as if they were on va-

cation—allowing full focus on the design system with a clear deadline. Our designer built it in

those 14 days. Martin, if you’re reading this, you’re amazing!

Multinational company case
Here, the time window was completely different—measured in years rather than weeks. Of course,

you needed to show monthly progress, but it was monthly, not daily, as is normal in a start-up

environment. It might appear less productive, but that’s not an accurate assessment. In these

large organizations, you need to synchronize many teams across internal and external depart-

ments. You want to work with all development teams to establish proper standards that will

facilitate adoption.

Feedback gathering takes much longer because you aren’t simply speaking with one person over

lunch, but with dozens across multiple countries. This significantly impacts planning and the

time invested in each decision. When you make a mistake in a start-up, the impact is relatively

small, but in a multinational company, it affects hundreds of developers. The stakes are higher,

and the process necessarily more deliberate.

Do we have any historic systems to build from?
Sometimes you need to build on a historic system, which can significantly impact your planning.

You need to know whether you’re building on a clean sheet of paper or on top of something old.

If you’re building on top of something old, you really need to understand it or have a developer

who understands it working with you throughout the process.

Dotidot case
We had an existing system that we decided not to build upon but rather recreate from the ground

up for two main reasons. First, Dotidot had undergone rebranding, so it was easier to implement

all the changes at once. Second, the system wasn’t properly maintained, making it more painful

to repair than to rebuild. It’s similar to an old building—sometimes it’s faster and cheaper to tear

it down and build something new than to repair it.

Chapter 5 99

However, we faced a significant challenge with the development side of the system. We still ha-

ven’t achieved 100% implementation because of some legacy components that can’t be updated.

In Figma, everything looks great, but remember: you’re building design systems to speed up

the entire process—particularly development—not just to have nice Figma files. This is a major

consideration when building on top of something old.

Multinational company case
Here, it was a completely new project, so everything was built from the ground up. They didn’t

have any proper system, only UI kits, which actually helped tremendously in building everything

as needed for the entire project. It was ideal because everything that was designed was immedi-

ately built and distributed to all development teams for implementation.

Can we use something pre-built?
Should you build a button again when there are millions of systems available with already created

buttons? Good question.

Based on your answers from previous points, you should be able to decide whether there’s a

possibility to use or buy something already done and leverage it to your advantage. But be care-

ful—these pre-built solutions have both advantages and disadvantages.

Here are the advantages:

•	 Time savings: It should save you time, at least in the short term.

•	 Well-built structure: Many of these systems are properly built in terms of naming,

properties, variable/token usage, and so on. You can learn from them.

•	 Code integration: Some systems come with pre-built code components that mirror

their Figma designs, which can save your development team significant time. Instead

of developers building components from scratch, they can use ready-made React,

Vue, or other framework components that match the design exactly. It’s always great

to have Figma and code working in tandem.

Here are the disadvantages:

•	 Not an ideal fit: If you build something from the ground up, you’ll build it exactly as

you need it. Pre-built systems often include features and complexity you don’t need.

•	 Performance in Figma: I’ve worked with many pre-built systems; I even use Un-

titledUI for my personal website. These systems can be slow—very slow. They’re

complex because they aim to solve many use cases at once, which can make Figma

sluggish.

Scaling Design Systems for Consistency100

•	 Difficulty adding components: Usually, you don’t deeply understand the structure

of variables/tokens or the naming conventions because you didn’t build them. Adding

something new in the same style can be challenging. You’ll either spend a lot of time

building to the same standard or won’t respect it, creating problems for the future.

•	 Future updates: Updates can be challenging, especially if you’ve modified the system.

•	 Cost: Yes, it will probably cost something, but honestly, compared to typical design

or developer salaries, this shouldn’t be a dealbreaker. Yet, it’s often the first objection

people raise.

Using something pre-built isn’t inherently bad, but if you have the time and resources to build

something future-proof, I would always recommend building your own.

Are there technical limitations to consider?
Invite developers to the project as soon as possible. I mentioned this multiple times in previous

chapters, and I’ll emphasize it again here. Technical limitations are the biggest killers of design

systems in my experience. If you design something that can’t be built—no matter how amazing

it looks in Figma—it’s worthless. Remember, the final product isn’t a Figma file but production

code. You need to plan accordingly.

Talk with developers about these specific topics:

•	 Use of specific frameworks such as Bootstrap

•	 Use of certain libraries (for example, for complex components such as graphs or

tables)

•	 Technical limitations from legacy code

Based on these conversations, you can design your system to ensure it will be developed as you

intended.

It’s also crucial to speak with every platform team in your company. Your design system might

be used across the web, mobile apps, desktop applications, or even emerging platforms. Each

platform has its own constraints, capabilities, and user expectations. Understanding all these

environments upfront helps you create a system that benefits everyone rather than becoming a

burden for some teams who have to work around limitations you didn’t anticipate.

Chapter 5 101

Do we have time to work on it consistently?
You need to know how much time you have to work on your design system, or if you’ll have

dedicated designers and developers assigned to it. In larger teams, it’s typical to have dedicated

people. In small teams, this can be a challenge.

My suggestion is this: if you don’t have dedicated people who will work on the system, create

explicit part-time roles for it. For example, a designer might spend 80% of their time on product

work and 20% on the design system. Make this split explicit, because often the problem with

unsuccessful design systems is the reality that we’ll work on them “when we have time”—which,

let’s be honest, is never.

Create the split and then promote it within the company. When I consulted for a team building

a large system without management buy-in, I pushed them to split the time of one designer.

She worked 50% on the design system and 50% on website design. It was challenging, but they

communicated that she was available for website work only on Monday, half of Wednesday, and

Thursday. Other days, she was “off” and working solely on the design system. This hard split

worked amazingly well, and they made significant progress.

Implement this type of split, because without it, people will push you to work on their “urgent”

problems, and you’ll end up working on the design system during evenings and weekends—which

is unsustainable.

Dotidot case
At Dotidot, we can’t have a dedicated team working on the design system because we have only

two designers and two frontend developers. However, we do allocate specific time for making

dedicated progress on it, with a separate backlog for all design system tickets. This approach

ensures steady progress without overcommitting our limited resources.

Multinational company case
Here, there’s a full team with designers, developers, and a dedicated owner working on the design

system. This makes sense when you’re building a system that will be distributed to hundreds

of people. This reality completely changes how you can approach building design systems—it

becomes its own product with proper workflows and dedicated time allocation.

Scaling Design Systems for Consistency102

Who will be using the design system?
This might seem obvious, but it’s crucial to map out all the different roles that will interact with

your design system. While designers and developers are the primary users, many other roles in

your organization might need access to components, documentation, or system guidelines.

Consider these potential users: product managers who need to understand component capabilities

for roadmap planning, QA testers who need to verify component behavior, content creators who

might use components for marketing materials, customer support teams who need to reference UI

elements when helping users, and even external consultants or agencies working on your projects.

Each user type has different needs and technical comfort levels. Product managers might need

high-level component overviews, while developers need detailed technical specifications. This

understanding directly impacts how you structure your documentation, what level of detail you

provide, and what platforms you choose for sharing your system. The broader your user base, the

more comprehensive and accessible your documentation needs to be.

How many designers will work with it?
You should know how many designers will use the system because that will significantly im-

pact the complexity of the documentation. (Don’t worry, we’ll cover specific documentation

approaches and what exactly to document later in this book.). If you have a small team like we

do at Dotidot, you can get by with minimal documentation standards since it’s relatively easy to

quickly onboard someone and be available when they need help.

If you’re building a large system for a company with high turnover (for example, with many ex-

ternal consultants), you should plan to invest more time in documentation. New people won’t

inherently know how to use your system, and you need to teach them without necessarily being

available for calls. This point leads us to the next question.

How often do we need to onboard new people?
If you’re frequently onboarding new people, you should invest in a proper process. Remember,

this isn’t just about onboarding designers but developers as well. In a large company I worked

with, we built a comprehensive onboarding process with links, videos, and embedded Figma files

in Confluence. We even created quizzes that designers and developers could take to test their

understanding. This approach dramatically accelerated onboarding, especially for developers.

Chapter 5 103

How many developers will work with it?
This question is similar to the one about designers, but I wanted to include it explicitly. The

number of developers will impact documentation needs, onboarding processes, and knowledge

dissemination throughout the team.

Remember, building the design system is actually the easiest part of the process. Company-wide

adoption is the hardest challenge—but we’ll talk more about that later.

Building advanced component libraries
Components are the building blocks of every design system, ranging from simple elements such as

labels to complex ones such as navigation systems. In this section, we’ll explore how to approach

the challenge of growing your design system and building components properly.

What’s the problem?
Many designers start with basic components that work for simple use cases but quickly run

into limitations when real-world complexity emerges. Components become brittle, difficult to

maintain, and eventually, designers start working around the system instead of with it. This

leads to inconsistencies across products and ultimately defeats the purpose of having a design

system in the first place.

How to fix it
Before diving into specific tips, let me emphasize the most critical aspect: solid foundations. The

most important part of building component libraries is having perfect foundations—tokens,

color naming, semantics, and all the underlying structure. For example, with the Dotidot design

system, our designer spent much more time creating the foundation structure and tokens than

actually creating components. It might seem like you’re moving slowly at first, but having a solid

base makes everything else much easier and faster later.

There are multiple tips I want to share with you. Unfortunately, I’m not sitting next to you to dis-

cuss them in your specific context, so you’ll need to select the ones most relevant to your situation.

Create a clear component architecture
You should establish a system of component architecture and stick with it. Personally, I like to

use the Atomic Design methodology with these levels:

•	 Atoms: The smallest building blocks (buttons, input fields, icons, labels)

•	 Molecules: Simple groups of atoms (search bars, form fields with labels)

Scaling Design Systems for Consistency104

•	 Organisms: Complex UI sections (navigation bars, forms, card layouts)

•	 Templates: Page-level structures

•	 Pages: Specific instances of templates (I rarely use these; in most cases, we stop at

templates)

Alternative approach at Dotidot
While Brad Frost’s Atomic Design is popular, our team at Dotidot uses a different structure that

we find clearer and more understandable:

•	 Primitives (tokens, foundations)

•	 Components (individual UI elements)

•	 Patterns (combinations of components)

•	 Templates (page-level structures)

This approach eliminates some of the confusion around the atoms/molecules terminology and

creates clearer distinctions between different levels of complexity. Choose whichever structure

makes more sense for your team’s mental model.

This system will help you organize your Figma files and improve performance, as Figma can have

issues with files containing many complex components.

Leverage component properties
Figma has several component properties you can use. We developed a visual differentiation system

that makes everything clearer at first glance:

Here’s the component properties iconography:

•	 ◆ = Variant

•	 ↺ = Swap Instance

•	 ○ = Toggle

•	 @ = Content

•	 ↳ = Nested Property

Chapter 5 105

Figure 5.1 – Figma properties structure using Iconography

The second important aspect is sorting properties. Ensure you sort them consistently across

components. For example, we always use this top-to-bottom sorting:

•	 Variants

•	 Toggles

•	 Swaps (under toggles)

•	 Content

Making sure every component follows the same hierarchy helps designers work faster because

they know that content options, for instance, will always be at the bottom.

Manage nested properties carefully
When adding nested properties to nested components, only include those that will be changed

most frequently. Otherwise, it can become very messy.

Scaling Design Systems for Consistency106

Figure 5.2 – If you add a lot of nested component properties, it can get messy very quickly

Chapter 5 107

As you can see in the preceding screenshot, an overwhelming list of properties won’t help anyone

work faster. Properties that won’t change often can remain accessible in the Layers panel inside

the component.

Standardize property naming conventions
You should maintain consistent naming conventions for properties across all components. For

example, will you use “Large,” “Huge,” or “Big” in size properties, or will you use T-shirt sizes such

as “XXL”? This choice is up to you and your team, but apply it consistently to every component.

(We’ll dive deeper into naming conventions and platform-specific considerations in Chapter 8.)

Create interactive components
If you want to communicate information more effectively, you can create interactive components

using prototypes. Of course, as you already know, I like to use the concept of scale, and this applies

here too. Creating a hover effect on a button might take 15-30 seconds, while building a fully in-

teractive navigation system takes much longer. You’ll need to decide what warrants prototyping

and what can be handled through documentation, as I discussed in Chapter 4.

Add brief descriptions
Each component can have a simple description that helps others understand it properly. Use this

feature and document consistently. I recommend providing some details to ChatGPT and having

it generate descriptions using the same template for consistency.

Use component background colors
Did you know that in the Components panel, you can see the background behind components?

This is an excellent feature for indicating deprecated or utility components.

Figure 5.3 – Red background and icon 🛑 shows you deprecated components right away

Scaling Design Systems for Consistency108

Figure 5.4 – Yellow background shows us utility (helper) components

You can see that we use red backgrounds for deprecated components and yellow for utility com-

ponents. Simply add a fill to the component background.

Ensuring systematic documentation and standards
One of my friends told me in the past that, in every project, by the time they thought it was time

to prepare documentation, it was already too late—and I believe it. As humans, we tend to for-

get things quickly, and this applies to design systems as well. We should document not only for

ourselves but mainly for others. I mention documentation for ourselves because solo designers

or small teams often argue they don’t need to document because they know and remember ev-

erything. Yeah, sure...

What’s the problem?
As your system grows and becomes part of your workflow, you’ll start to onboard more and more

people. As I wrote earlier, adoption is the tricky part, not the design itself. Documentation trans-

forms a collection of components into a true system—a design system. Again, if you’re looking at

Polaris or Carbon, use them only as a reference, not as a benchmark, because their documentation

is very complex, and you probably don’t need even 10% of it to be successful.

How to fix it
You should consider the following key points.

Chapter 5 109

Pick the right platform
I always start with a simple question before deciding how we should document: Who will be

reading it? This is the fundamental question for you. If the documentation is only for designers,

leave it in Figma, where the designers already work. If the documentation is also for developers (as

it should be), I would prefer a platform that is more developer-friendly, since in most cases, there

are more developers than designers, so you should make a concession. Storybook is an excellent

choice, in my opinion. Some teams also use Notion with the ability to embed Figma files directly

into it, which provides a nice middle ground between design and development accessibility.

Establish documentation standards
You need to agree on what the standard is at this specific time. Remember, you can always re-

visit and make the documentation more robust if the system requires it in the future, but your

goal isn’t to spend an hour building a component and then a day documenting it. Agree with all

stakeholders on the standards you’ll deliver now.

Document component behavior and usage
I’ve mentioned behavior multiple times, but you need to document it properly when required.

For example, here’s some behavior documentation for our inputs at Dotidot:

Figure 5.5 – Description for our developers on how this component should behave

Scaling Design Systems for Consistency110

Usage is another important part. For atomic components, it’s often clear, but when you move

to organisms and templates, you should definitely document usage guidelines. Without them,

people either won’t use these components or will use them incorrectly.

You can use plugins (for example, Auto Documentation, as I mentioned in Chapter 2) to handle

part of this work.

Build a quick guide
At Dotidot, we had a problem with onboarding developers into our design system, so we created

a simple quick guide on the first page of our Figma file and in Confluence with all the essential

details that developers should know.

Figure 5.6 – Small and simple confluence page with all the links

Chapter 5 111

As designers, you’re probably very knowledgeable about something you’ve built, but always think

about others who weren’t part of the creation process.

Managing design systems for growing teams
If you’re reading this, I want you to stop and congratulate yourself. If you need to deal with these

problems, you’ve already succeeded in the sense that your design system is probably past its initial

phases and is usable—but there are new challenges ahead.

What’s the problem?
Scaling design systems across growing teams introduces new challenges, workflow bottlenecks,

and communication gaps. Without proper management, your work won’t have the impact you’re

looking for. What worked for 5 people won’t work for 50, and you need to be ready for scaling.

How to fix it
Here are practical approaches that have worked well across different organizations. Adapt these

strategies to fit your specific needs and constraints:

Implement monthly design system checks
Put in place regular meetings between designers and developers where you’ll discuss all the sub-

optimal things that need attention. If you have larger teams, include only the team leaders—you

don’t want to schedule meetings with dozens of people. Focus discussions on workflow optimi-

zation and how to make the design system easier to understand and use.

Establish governance
With bigger teams, you should dedicate specific people to work on your design system. In this

phase, you should have three key roles filled:

•	 Design system owner: Handles planning, communicates with other teams using

the system, argues about priorities, and works on adoption

•	 Design system designer (aka Figma Magician): Builds and optimizes components,

creates design documentation

•	 Design system developer: Builds the components and creates development doc-

umentation

Scaling Design Systems for Consistency112

Implement version control
As covered in Chapter 1, version control becomes critical for large teams. Use Figma’s branching

feature for design system changes. Create testing files where you can verify that nothing is “broken”

by accident when releasing new versions. In these files, place all major designs next to the same

frame as a screenshot. When you approve changes, you can easily compare the static screenshot

with the dynamic frame to see if everything appears as it should.

Create multi-level access
Not everyone needs edit access to your design system:

•	 Set up projects and permissions to control who can edit the design system files

•	 Use Figma libraries to distribute components safely

•	 Create separate files for testing new components before they become part of your

main design system files and are distributed to all teams

Build feedback loops
In larger teams, you need to establish proper feedback channels from other designers and devel-

opers to gather all input in one place. In bigger teams, it’s good to approach this as you would

normal product development: have a single location to collect all feedback from meetings, Slack,

emails, and so on, and plan your roadmap accordingly. Each release of your design system should

be treated like a product release—communicate about it, inform others, and ensure all teams

understand the new components, just as you would ensure everyone understands new features

in product development.

Another important aspect is to build easy channels for supporting designers and developers. Create

separate Slack (or other communication platform) channels to help others with adoption and

implementation. If they ask for help and you don’t provide it, your adoption effort is a lost battle.

Utilizing Figma’s design system tools
Figma is, in my opinion, the main reason why design systems have become such a hot topic for

most teams. Design systems existed before Figma, but Figma has built many amazing tools that

can help with their creation and adoption.

Chapter 5 113

What’s the problem?
Without utilizing Figma’s specialized design system features, you’re making your work more

difficult than it needs to be. These tools are specifically designed to help you build, maintain, and

analyze your design systems.

How to fix it
Figma offers several powerful tools specifically designed for design systems. Here are the most

impactful ones that can significantly improve how your team builds and uses components:

Use Code Connect if you can
If your Figma plan allows it (Organization or Enterprise), use Code Connect—it’s a game-changer

for developer workflow. Here’s how it works: you link your actual production component code

directly to your Figma components. When developers inspect a component in dev mode, they

see a Code tab next to the usual Inspect tab. Instead of manually writing code or copying CSS

values, they can simply click and copy the exact component code they need.

For example, if a developer needs a button with a specific variant (such as Primary with an icon),

they can click on that exact button in Figma and copy the complete React, Vue, or HTML code with

all the right properties already set. No guessing, no manual translation from design to code—just

copy and paste working components. This eliminates the back-and-forth between designers and

developers about implementation details.

Leverage design system analytics in Figma
Figma has built complex analytics on top of your design system library. Unfortunately, this fea-

ture is also locked behind Organization or Enterprise plans. If you have access to it, dive deeper

into it periodically—once a month is usually enough to spot trends. Look into these key points:

•	 Check the Insert counts for components: This metric shows how often a compo-

nent was added to Figma files in the past 30 days. Is a major component missing

from the list? Or, are new components barely used? This information signals that

you need to better communicate with your teams. Sometimes teams simply miss

information about new components and don’t know they’re available.

•	 Monitor the Detach numbers: If you see a large number of detached components,

you have a problem. Try to find out why designers are detaching your components.

Perhaps you’re missing a variant—this should be a signal to reprioritize your road-

map and build it as soon as possible.

Scaling Design Systems for Consistency114

•	 Review the file/team names: In medium to large teams, you should know the main

projects the company is working on. You should be able to see all file or team names

in the analytics. If you’re missing a team or file name, connect with the team and

discuss why they aren’t using the design system properly.

Implement design system analytics outside Figma
Of course, you already know that Figma isn’t the final state—production code is. In this case, you

should work with code analytics as well. You can use many third-party analytics tools to help

you analyze component usage in code. Perhaps designers are using components in Figma, but

development teams aren’t implementing them. Work with your development team to find the

most suitable option, but I can recommend Omlet. You can find out more at https://omlet.dev/.

Unpublish helper components
In your design system, you’ll have many helper components—components that shouldn’t be used

by themselves but only in combination with other components (for example, a tooltip). A tooltip

without any other component shouldn’t be used, so unpublish it from your design system. You

can do this easily by adding an underscore before the component name. So, it won’t be “Tooltip,”

but “_Tooltip.” You can also use a period, so it would be “.Tooltip.”

Use branching for version control
As I’ve mentioned in previous chapters, branching becomes critical when working with design

systems, especially for larger teams. If you have an Organization or Enterprise Figma plan, use

the branching feature to manage design system changes safely. Create branches when you’re

making significant updates to components or adding new ones.

This approach lets you test changes without breaking the main design system that other teams

are using. You can invite stakeholders to review changes in the branch, gather feedback, and make

iterations before merging back to the main file. Think of it like code branching—you wouldn’t push

untested code directly to production, and you shouldn’t push untested design system changes

to your main library either.

https://omlet.dev/

Chapter 5 115

Dynamic system scaling to accommodate product
iterations
Every product changes over time, and your design system will need to adapt accordingly. A static

system quickly becomes outdated and irrelevant.

What’s the problem?
Many design systems become bottlenecks during rapid product development. If updating the

system is too slow or cumbersome, teams work around it, creating inconsistencies and technical

debt. Systems must evolve alongside products to remain relevant. Sometimes, company manage-

ment thinks that design systems are a one-time investment, which doesn’t help either.

How to fix it
Remember that a design system is a product, and every product needs iteration and optimization.

Implement modular architecture
You should plan the entire system to be modular. This ranges from simple decisions such as not

keeping foundations and components in one file, to more complex choices such as avoiding in-

tricate dependencies between components.

Establish update cycles
This sounds normal, and I’ve mentioned it previously, but in this case, I need you to work hard

to establish this mindset from the stakeholders’ (C-level management) point of view. You, as

designers and developers, understand it, but now management needs to understand that you

need to work on the system periodically to make it better for the rest of the company.

Try to align your updates with the rest of the product development in your company. Do they run

in sprints? Great—run in them too, in parallel. Are you having company product team meetings

for all product changes? Great—try to “steal” a minute or two to inform everyone about your

updates and push the information to the product teams.

Scaling Design Systems for Consistency116

Plan for deprecation
Not every component should live forever. Sometimes you need to make the hard decision to

deprecate components. Check the analytics I mentioned earlier to be sure which components

are ready to retire.

Retiring components doesn’t mean deleting them immediately—that would break all the old designs

using them. Instead, mark them as deprecated (you can use the red background method I mentioned

earlier), stop promoting their use, and gradually migrate existing designs to newer alternatives. Only

remove deprecated components after you’re certain no active projects depend on them.

Build experimentation spaces
Encourage all teams to experiment and help you build a better design system. Welcome their local

components that you can build upon and bring to other teams. Create an environment where

their work will be appreciated and built upon.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.

com/unlock, then search this book by

name.

Note: Keep your purchase invoice ready

before you start.

packtpub.com/unlock
packtpub.com/unlock

6
Utilizing Design Tokens for
Consistency

Design tokens are one of the best helpers for consistency and transferring information between

designers and developers. In this chapter, I want to dig deeper into them, explain the main dif-

ference between design tokens and Figma variables (because they aren’t the same thing as many

people think), and show you real-world cases of when to use what and why, and how to work on

the versioning and documentation of your tokens.

Design tokens represent a fundamental shift in how we manage visual consistency across plat-

forms, creating a true bridge between design and development.

We’ll dive into how tokens serve as the “single source of truth” that both designers and developers

can reference, ensuring that visual elements remain consistent across all products, regardless of

platform or technology. By mastering these techniques, you’ll establish a more efficient workflow

that reduces errors, speeds up implementation, and creates truly cohesive digital experiences.

We will explore these topics in this chapter:

•	 Introducing design tokens as a design-code bridge

•	 When and how to introduce design tokens in your team

•	 Difference between design tokens and Figma variables

•	 Design token structure: how to build design tokens

•	 Implementing design tokens in Figma via Token Studio

•	 Implementing Figma variables

Utilizing Design Tokens for Consistency118

•	 Version controlling design tokens with GitHub or GitLab

•	 Maintaining token documentation for cross-team consistency

So let’s jump into the first topic.

Introducing design tokens as a design-code bridge
Design tokens are decisions that you make as a designer, but unlike styles, you can transfer these

decisions directly into code. What decisions? Things such as colors, typography, spacing, anima-

tion duration, sizing, opacity, and others. Without tokens, these decisions are simply rewritten

by developers who look at your design and manually transfer values into code, introducing the

potential for human error. With design tokens, developers work with the token itself rather than

the underlying value, creating a shared language and bridge between designers and developers.

What’s the problem?
Without design tokens, decisions exist in isolated environments. Designers work with styles, while

developers implement these decisions in code using different naming conventions, structures, and

sometimes even different values. This disconnect leads to inconsistencies, miscommunication,

and tedious back-and-forth as teams try to stay aligned.

When a designer updates a color in Figma, developers have no automated way to know about or

implement this change. Similarly, when developers need to adapt designs for different platforms,

they often recreate values manually, introducing errors and variations. Without a shared system

of record, maintaining visual consistency becomes increasingly difficult as products scale.

How to fix it
Design tokens are here for this reason. As with many things in this book, I like to look at solutions

that scale. Design tokens are the same. When you google them, you’ll find stories from Spotify or

Adobe with thousands of tokens, but you don’t need to have that many. You can start with even

a small part of your design decisions and tokenize it step by step.

Here’s how design tokens can help you bridge the gap:

1.	 Single source of truth: Design tokens give you a single source of truth because they’re

stored in code (mostly JSON), so both sides are using this instead of two separate sources

(usually Figma styles and code). While developers use transformation tools to convert

the JSON into their platform-specific formats, the key point is that everyone references

the same source of truth.

Chapter 6 119

2.	 Consistent naming: You’ll establish the same naming across teams, so both teams will

know what you’re talking about, and changes can be implemented quickly.

// Instead of this:

Figma: "Purple/500"

CSS: "primary-color"

iOS: "colorPurple"

Android: "color_purple_primary"

// Use a shared naming convention:

"color.primary.default": "#5C50E6"

3.	 Separate design decisions from implementation: Each platform can have different stan-

dards, and tokens are abstract values, so they can be transformed for platform needs very

easily and quickly.

 Quick tip: Enhance your coding experience with the AI Code Explainer

and Quick Copy features. Open this book in the next-gen Packt Reader. Click

the Copy button (1) to quickly copy code into your coding environment,

or click the Explain button (2) to get the AI assistant to explain a block of

code to you.

 The next-gen Packt Reader is included for free with the purchase of this

book. Unlock it by scanning the QR code below or visiting https://www.

packtpub.com/unlock/9781835083468.

Utilizing Design Tokens for Consistency120

4.	 Clean hierarchy: They use an easily connected system that helps you link multiple de-

cisions as a chain. Changes are quick, and you avoid possible errors in the future (I’ll

explain more later).

// Primitive tokens (raw values)

"color.purple.500": "#5C50E6"

// Semantic tokens (usage-based)

"color.primary.default": "{color.purple.500}"

5.	 Multi-brand readiness: This can be specific for certain businesses, but your system be-

comes ready for multi-brand usage. Your development team can have just one component

with many visual variations (amazing for white labeling systems or to brand the system

for users’ preferences).

6.	 Accessibility improvements: With tokens, implementing accessibility needs becomes

easier because developers won’t need to manually adjust contrast, sizes, and other ele-

ments throughout the code base.

Design tokens aren’t just a new workflow, but a complete shift in how you think about collabo-

ration between designers and developers across projects.

When and how to introduce design tokens in your
team
Understanding design tokens is one thing—getting your team to adopt them is another challenge

entirely. The biggest mistake teams make is diving straight into technical implementation with-

out considering the human element. Design tokens represent a fundamental shift in how teams

work together, and successful adoption requires a strategic approach.

What’s the problem?
I once saw a team with a brilliant designer who understood the benefits of design tokens and

loved them. This was a few years back, when design tokens weren’t as popular and Figma didn’t

have variables yet. This designer prepared an amazing structure in Token Studio with everything

that a proper implementation of design tokens should have. He invested dozens of hours in the

structure, creation, and documentation of everything. The implementation and adoption in en-

gineering and the rest of the design team were zero.

Chapter 6 121

He had jumped to the finish line, investing enormous time into a technical solution without con-

sidering one big potential challenge: the human factor. Without buy-in from key stakeholders,

even the most carefully crafted token system will be abandoned or inconsistently applied.

How to fix it
I love to say that we designers are good at solving problems—that’s our job. But we don’t always

apply this amazing skill to other parts of our work. So, approach implementation and adoption

of design tokens as another design problem that needs a structured solution:

1.	 Define your target audience.

2.	 Find ambassadors.

3.	 Identify pain points (why you’re implementing them).

4.	 Start small with immediate impact.

5.	 Establish success metrics.

6.	 Plan onboarding of current and future team members.

Define your target audience
Like any project, design tokens have a target audience. The first group that comes to mind is

designers, but don’t forget developers, product managers, QA testers, and management. Each of

these groups has different concerns with implementation:

•	 Designers: Fear of losing flexibility and creativity

•	 Developers: Worry about more work, especially if tokens are set up by designers who

don’t understand the development world, making them unusable

•	 Product managers (PMs): Concern about pushing feature development to the side track,

adding more maintenance, and requiring QA testing

•	 Management: Worry about a big project that won’t have a real return in terms of money

Understanding these concerns upfront helps you address them proactively rather than reactively.

Find ambassadors
It’s always good to find ambassadors in each of the groups described previously. These people can

give you better insight into their concerns and pain points while helping you push for the project.

In my experience, projects pushed from multiple roles have a much better chance of getting a

green light from management. When leadership sees that designers, developers, and PMs are all

calling for something, it’s very hard to say no.

Utilizing Design Tokens for Consistency122

Try to find people who already understand design tokens or are willing to give you an afternoon

when you can explain the benefits and why they should want them.

Identify pain points (why you’re implementing them)
Each of your groups has different pain points that design tokens can solve when implemented

correctly:

•	 Designers: Consistency across the whole product, and easier hand-off to developers.

•	 Developers: Easy UI changes that don’t require implementation from scratch, theming

(light and dark mode becomes super easy), and eliminating communication gaps.

•	 Product managers: Speed and consistency; developers can implement certain states

without designers if they have semantic tokens (more about them later).

•	 Management: Speed equals money—that’s the main argument for implementing design

tokens. If your design and development teams work faster, you’ll see better ROI.

Start small with immediate impact
Implementation of design tokens is about scale—it’s not a yes or no question, but about how

much you want to invest in them. Start small. Colors are an easy starting point because they’re

visual and open up theming (light and dark mode) that’s easy to explain. Set a strict deadline

for when you want to have some part implemented and where—this is crucial for the next steps.

Establish success metrics
Every manager will want to see success metrics that demonstrate that this is a successful project.

In design token implementation projects, I like to talk about these:

•	 Usage metrics: How many components use tokens versus hardcoded values

•	 Consistency: Reduction of unique color/spacing/typography values that are now managed

via tokens, making changes super easy and not time-consuming

•	 Efficiency: Time saved in design-to-development hand-off (this is honestly hard to mea-

sure, but in many cases, feedback from both teams that the process is much faster was

enough for management)

•	 Quality: Reduction in visual inconsistencies (bugs) during QA

Chapter 6 123

Plan onboarding of current and future team members
Creating design tokens is the easier part—the hard part is adoption. It’s good to plan for it:

•	 Have a special communication channel for design system announcements (here you should

talk about tokens as well)

•	 Have a dedicated support channel where you’ll help people with implementation, expla-

nations, and so on

•	 Celebrate wins and new ambassadors

•	 Have regular check-ins with all teams—this can be done by ambassadors in their roles, so

developer ambassadors will check in with developers, PMs with PMs, and so on

These steps have helped me in the past with the implementation of design tokens and explaining

their value to the whole company.

Difference between design tokens and Figma
variables
When Figma announced variables at Config 2023, there was a slide showing Design Tokens

crossed out with Variables next to it. This was the first indicator that Figma variables aren’t

the same as design tokens—and they truly aren’t. Many designers without experience working

with true design tokens (via Token Studio, for example) mistakenly think they’re identical. Both

variables and tokens have their strengths and limitations, and it’s crucial to understand these

differences before deciding which to use.

What’s the problem?
Figma variables represent Figma’s native interpretation of design tokens. While powerful, they

have significant limitations. Token Studio (the most widely used plugin for working with design

tokens in Figma) also has its own constraints. Choosing the wrong approach can cause problems

later in your project, especially as it scales. Therefore, it’s worth taking time to understand the

differences to make the right, future-proof decision for your specific needs.

Utilizing Design Tokens for Consistency124

How to fix it
The simple answer is as follows:

•	 If you’re building a small design system only in Figma with at most light and dark mode,

use Figma variables

•	 If you’re building something bigger, future-proof, and not locked into Figma, use Token

Studio

But I understand you need more details, so let’s break it down.

For designers or developers?
This should be your first consideration: Will the tokens be used only by designers or by developers,

too? I always advocate for developer usage since that’s the main benefit of tokens, but sometimes

this is outside your control. If tokens will be used exclusively by designers, Figma variables work

well. If developers are involved, I’d recommend Token Studio in 99% of cases. What about that

1%? I’ll explain in the following points.

Figma versus other platforms
Figma variables can only be used within Figma—they’re built natively into the tool, and that’s

it. Token Studio, however, can be used across different design applications.

Why is this important if you’re reading a book about Figma, which has more than 80% market

share? When I first started using Figma, I often heard, “That’s nonsense, everyone designs in

Photoshop or Sketch. Figma will never work.” Well... that didn’t age well. There was a time when

Figma was the small player in the room. Now it’s a giant, but this position can change. Something

new might come along and dethrone Figma.

For example, Penpot (another small open source design tool) has native integration of design

tokens and supports the W3C Design Tokens Community Group standard, and at Dotidot, we’re

testing it on a real project. I even know of some enterprises testing Penpot alongside Figma be-

cause Penpot can be self-hosted and is free.

Native versus plugin-based
Of course, Figma variables being native is a huge benefit. You don’t need to open any plugin to

use them. Variables are much faster than Token Studio and more designers understand them

because they’re built-in and, honestly, much easier to grasp.

Chapter 6 125

Token Studio isn’t just a plugin
It used to be just a plugin, but it’s now a platform, with the plugin serving as the connector be-

tween Figma and the platform. Let me explain the key differences.

Token connection
With Token Studio, you can easily visualize how your tokens are connected to each other, which

is crucial for larger design systems to see what will impact what. This visualization isn’t available

in Figma variables. For 100 tokens, this might not matter much, but with 500 or more, it becomes

a significant issue.

Theming
Figma variables have modes, but they’re very limiting: 4 modes in Professional and Organization

plans, and 40 in Enterprise. This artificial limitation exists to encourage upgrades. In contrast,

Token Studio’s themes are unlimited—you can have as many as you need. However, the free ver-

sion of Token Studio is quite limited and doesn’t support themes or advanced folder structures,

so you’ll likely need the paid version for serious design system work.

Data structure
Figma variables are organized into collections and modes, which nobody outside of Figma de-

signers will understand. Tokens in Token Studio are saved in a JSON structure that any developer

will immediately comprehend.

Version control
Figma variables don’t have a proper versioning system built in. They live in your file along with

everything else. You can use the versioning techniques I explained in previous chapters, but

that’s not ideal.

Tokens in Token Studio can be synced with repositories such as GitHub or GitLab. This is fantas-

tic because these developer platforms have robust version control, and developers are already

familiar with them.

Types of tokens
Figma variables can do more than just design tokens—you can use them for advanced prototyping

or text translation. That versatility is great, but it means they lack focus and specialized features

for token management.

Utilizing Design Tokens for Consistency126

Figma variables offer just four basic token types:

•	 Color

•	 Number

•	 Boolean

•	 String (text)

What’s notably missing are composite tokens, which Token Studio handles elegantly. Take typog-

raphy as an example—in Token Studio, a single typography token can encapsulate font family,

size, weight, line height, letter spacing, and more as one cohesive unit. This approach dramatically

simplifies the management and application of complex token types across your design system.

This specialization is where Token Studio shines. By focusing exclusively on token management

rather than trying to serve multiple purposes, it provides deeper functionality specifically tailored

to the design system’s needs.

Code use
Figma variables don’t have a straightforward way to use them in code. You need a third-party

plugin just to export them. You can use plugins such as Variables to CSS or Variables to JSON

(which I mentioned in Chapter 2) to bridge this gap. In enterprise environments, the exported

JSON is typically processed through Style Dictionary, the industry standard for transforming de-

sign tokens into platform-specific code formats such as CSS variables, iOS Swift, or Android XML.

Token Studio is built with developers in mind, so it assumes you’ll use tokens in code. You can

export them from the platform to any format your development teams need across various plat-

forms (web, iOS, Android, etc.).

Design token structure—how to build design tokens
Now that you understand the difference between Figma variables and Token Studio, let’s talk

about the proper structure for your design tokens. This structure can be applied with either Token

Studio or Figma variables—the principles remain the same regardless of which tool you choose.

What’s the problem?
Design tokens can become messy very quickly. Without proper planning and structure, they’ll

devolve into an unusable collection of values that nobody will adopt. Think of it like a disorganized

library—if books aren’t properly categorized and you can’t find what you need, you’ll eventually

stop going there altogether. The same applies to design tokens. Taking time to plan your token

structure is crucial; otherwise, you risk creating a system that people avoid rather than embrace.

Chapter 6 127

How to fix it
Remember that in most cases, other people (both designers and developers) will be using your

design tokens. Their core purpose is to bridge the design and development worlds, so it’s essential

to create a system that’s intuitive for everyone involved.

Proper hierarchy (structure)
One of the most powerful features of design tokens is the ability to connect/reference them (token

alias) to each other, building a logical hierarchy that’s easy to navigate and use. Let me explain

with an example.

If I show you #007BFF and ask where and how this color is used, you wouldn’t know. Neither

would I.

What about color/blue/500? Now you have context—it’s a blue color at the 500 level, likely the

default blue in your system.

Let’s go further: color/background/default. This tells you it’s used for background elements

in their default state.

Even more specific: button/primary/background. Now you know exactly where and how this

color is applied—it’s the background for primary buttons.

This hierarchy demonstrates the beauty of design tokens. You can start with primitive (core)

tokens such as color/blue/500 and build up to more specific (semantic) tokens such as color/

background/default or even component-level tokens such as button/primary/background.

The real power emerges when these tokens are connected. If developers implement your design

tokens in code using button/primary/background and you later change the underlying value

that this token connects to (perhaps from color/blue/500 to color/green/500), they won’t

need to modify any code where the component token is used. Instead, they only need to update

the single core token value in one place, and the change propagates automatically through the

token hierarchy, updating every component that uses the connected component tokens instantly.

This means changing a color across hundreds of components requires updating just one line of

code instead of hunting down every instance manually.

Utilizing Design Tokens for Consistency128

Practical token planning
Now that you understand the hierarchy, you might be wondering: How many tokens do I actually

need to create?. This is one of the most common questions from designers new to tokens, and the

answer depends on your specific project, but here are some practical guidelines to get you started.

Start with an audit (if you have an existing project)
If you’re working with an existing project that already has components and designs, start by

auditing what you currently have. Open your Figma file and count the following:

•	 How many unique colors do you actually use?

•	 How many different spacing values appear in your designs?

•	 How many typography styles do you have?

You might be surprised to discover that many designers think they have many more colors than

they actually use when they count unique values properly.

The “three uses” rule
A good rule of thumb is that if you use a value (color, spacing, or typography) in three or more

places, it probably deserves a token. If it’s only used once or twice, you might not need a specific

token for it yet.

Some teams are very strict and require that everything must be a token, with no hardcoded values

allowed. While this approach has merit for large, mature design systems, if you’re just starting

out, the bigger problem you’ll face is managing thousands of tokens rather than having some

values hardcoded. Start pragmatically and let your system grow naturally.

Semantic token examples for a typical website
For colors, you might need semantic tokens such as the following:

•	 text/primary: Main body text color

•	 text/secondary: Subtitle and secondary text color

•	 text/error: Error messages

•	 text/success: Success messages

•	 surface/default: Main page background

•	 surface/raised: Card or section backgrounds

•	 border/default: Standard border color

•	 border/focus: Focus state borders

Chapter 6 129

Component token examples
For buttons, you might create the following:

•	 button/primary/background: Primary button background

•	 button/primary/text: Primary button text color

•	 button/secondary/background: Secondary button background

•	 button/secondary/border: Secondary button border

Start small and grow
Don’t try to tokenize everything on day one. Start with the following:

1.	 Colors first: They’re visual and easy to understand.

2.	 Spacing second: Usually, 4–6 values cover most use cases.

3.	 Typography third: Focus on the most common text styles.

Common beginner mistakes to avoid
The following are some beginner mistakes to avoid:

•	 Over-tokenizing: Creating tokens for values used only once

•	 Under-tokenizing: Using the same core token directly everywhere instead of creating

semantic tokens

•	 Inconsistent naming: Mixing different naming conventions within the same system

•	 Too many variations: Creating 15 button variants when you really only need 3

Remember that tokens are meant to make your life easier, not more complicated. Start simple, and

let your system grow naturally as your design needs become clearer.

Implementing design tokens in Figma via Token
Studio
I want to start with implementing design tokens using Token Studio because it’s my preferred

approach. We’ll talk about Figma variables in the next section, so if you don’t want to use Token

Studio, feel free to skip ahead and come back when you’re ready to explore it.

Utilizing Design Tokens for Consistency130

First use of the plugin
Token Studio is a platform for complex design systems, but I’ll focus on the Figma plugin and

working with it. When you first open the plugin in a new Figma design file, you can explore their

example by clicking Load Example. This provides a simple structure of design tokens to help

you experiment with the plugin without needing a proper project. For our purposes, we’ll click

on New empty file.

Figure 6.1 – The first page that you see when you open the Token Studio plugin

A new file without any tokens will appear, and you’ll see the Token Studio UI for the first time.

Let me introduce you to its main components.

Figure 6.2 – Token Studio navigation tabs

Chapter 6 131

You have three main tabs:

•	 Tokens: This is where all your design tokens will live. Here, you can create new tokens,

apply them to elements in Figma, and switch between different token sets (groups of

tokens) or entire themes (for example, light and dark mode).

•	 Inspect: Click on any element in Figma, and you’ll see what design tokens are applied

there, whether there are any problems, and what needs fixing.

•	 Settings: This is a simple settings panel where you can add a license key for the Pro version

and adjust minor preferences such as language and base font size. The most important

function here is Sync providers, which we’ll explore next.

Settings—Sync providers
Token Studio is a plugin in Figma, and because of that, it can’t save design tokens automatically

with the Figma file like Figma variables can. So, how do you share design tokens with other de-

signers? That’s where sync providers come in.

You can select from multiple options, but the most useful ones from my perspective are the fol-

lowing:

•	 GitHub: I’ll demonstrate this approach in the next section.

•	 GitLab: This is similar to GitHub but preferred by some development teams. (I will show

you how to connect GitHub; if you are using GitLab, follow this guide: https://docs.

tokens.studio/token-storage/remote/sync-git-gitlab.)

•	 Supernova: This is an excellent Czech app for managing and documenting large design sys-

tems (https://docs.tokens.studio/token-storage/remote/sync-cloud-supernova).

•	 Token Studio Cloud: Remember when I mentioned that Token Studio is a platform and not

just a simple plugin? This is one aspect of that platform (https://docs.tokens.studio/

token-storage/remote/sync-cloud-studio-platform).

How to set up GitHub sync step by step
I’ll show you the GitHub option because it was the first one I used and the one I use most fre-

quently. Most developers I know use GitHub, and it’s always better to be on the same platform

as your development team. This eliminates the roadblock of explaining why your tokens aren’t

in their environment. If your development team uses GitLab, use that instead—the setup process

is very similar:

https://docs.tokens.studio/token-storage/remote/sync-git-gitlab
https://docs.tokens.studio/token-storage/remote/sync-git-gitlab
https://docs.tokens.studio/token-storage/remote/sync-cloud-supernova
https://docs.tokens.studio/token-storage/remote/sync-cloud-studio-platform
https://docs.tokens.studio/token-storage/remote/sync-cloud-studio-platform

Utilizing Design Tokens for Consistency132

1.	 Click on GitHub and you’ll see the settings panel shown in the following figure:

Figure 6.3 – GitHub sync settings in Token Studio

Chapter 6 133

2.	 You’ll need a GitHub account for this to work. Registration is free and straightforward—

just go to https://github.com/signup and follow the wizard.

3.	 You’ll need a personal access token to verify that Token Studio is authorized by you and

allow the plugin to push (upload) design tokens to the repository we’ll create.

4.	 Click on your profile picture and go to Settings.

5.	 At the bottom of the side settings menu, click on Developer settings.

6.	 Then, go to Personal access tokens and select Tokens (classic), which works fine for

new accounts.

7.	 Add a descriptive name (your choice).

8.	 Select the repo scope in Select scopes to give this token all the permissions it needs.

Figure 6.4 – Scope selection in GitHub

https://github.com/signup

Utilizing Design Tokens for Consistency134

9.	 After creation, you’ll receive a token similar to the one shown in the following figure. Copy

this to Token Studio.

Figure 6.5 – Personal access token from GitHub

10.	 Now, we need to create a project in GitHub where we can upload the file with design tokens.

In the top navigation, click on the + icon and then New repository.

Figure 6.6 – Creation of repository in GitHub

11.	 Add a repository name

12.	 Change the visibility to Private (so you’ll need to send invitations to team members to

access it).

13.	 Check Add a README file.

Chapter 6 135

Figure 6.7 – Repository creation settings

14.	 Click Create repository.

15.	 Copy the owner name (account name) and repository name (from the URL) and enter

them in Token Studio.

Figure 6.8 – Repository URL

Utilizing Design Tokens for Consistency136

16.	 In the Branch input, enter main.

17.	 Token storage location is the folder and filename on GitHub. For our case, we’ll simply

use tokens.json (it needs to be in .json format), so just enter your chosen name followed

by .json.

The remaining inputs can be left empty. Your Token Studio settings should now look like

this:

Figure 6.9 – Complete GitHub sync settings in Token Studio

18.	 Click Save.

Chapter 6 137

19.	 If everything is configured correctly, you’ll see a new popup asking for a commit message

for the first sync:

Figure 6.10 – Push changes modal

20.	 Push the changes (there aren’t any yet since we haven’t created tokens, but this will set

up the file on GitHub). This process can take some time, so be patient and wait until it

completes.

21.	 Return to GitHub, and you should see your new file with the specified filename.

Figure 6.11 – New tokens.json file in GitHub created from Token Studio

You’re all set! Now, you can easily push new changes to GitHub, and anyone with access to this

repository can pull (download) them and work with them in their own Token Studio. They’ll need

to follow this guide as well, but can skip the repository creation part since you’ve already done that.

Utilizing Design Tokens for Consistency138

Creation of a new set
Now that you’ve handled the technical setup with GitHub, you can focus on creating design to-

kens. Return to the first tab in Token Studio labeled Tokens. Let’s start building a proper structure

and tokens.

Proper structure
There are many approaches to creating an effective token structure, and yours should be tailored

to your specific needs. While you can find various methodologies online, we’ll start with a simple,

three-tier approach:

•	 Core: These are your foundational tokens, such as Blue500 (color), Primary500 (color),

Poppins (font family), 2px (dimensions), Underline (text decoration), and so on.

•	 Semantic: These use purpose-based naming so everyone knows exactly where to apply

them. Examples include tokens such as Heading1, color.action.default, border-radius.

none, and so on.

•	 Component: These are specific to individual components, when needed. Examples include

tokens such as button.primary.border-radius.default.

To begin, click on + New Set and create a Core set.

After creating it, you should notice a new blue bubble at the bottom of the Token Studio plugin.

This icon indicates that there are unsynchronized changes that haven’t been pushed to GitHub

yet, which is expected since we just created a new token set.

Figure 6.12 – Indicator of new unsync changes

Creation of design tokens
Let’s create our first design token in the new Core set. We’ll start with colors because they’re

easier to understand:

1.	 Click on the + icon next to Color.

Chapter 6 139

2.	 You need to add a name. It’s important to understand how you can nest tokens. You have

two options:

•	 Use just the name of the token, for example, Primary500.

•	 Use a group structure that will nest tokens, for example, Red/500. If you include a

slash (/) in your token name, Token Studio will automatically create a group. This

grouping is one of the most important structural decisions you’ll make to keep

everything properly organized and easy to find.

3.	 Add values. This is up to you—simply add a hex code for your color.

Figure 6.13 – Your first two color tokens

Congratulations! You’ve now created your first design tokens. The preceding figure illustrates

what your tokens should look like at this stage.

Creation of alias (semantic) tokens
For better usability, you need to create semantic tokens, because knowing where to use tokens

such as Primary500 or Red/500 isn’t always intuitive. Let’s create some semantic tokens:

1.	 Start with a new token set. Click on + New Set and create a Semantic set. This will be

empty initially since all your existing tokens are in the Core set.

2.	 Let’s create new color tokens in the semantic set. Click on the + icon next to Color.

3.	 We’ll use semantic token names that reference our Red/500 token. Here are two examples

that will use the same core token as a reference:

•	 text/error: For error messages in our design

•	 background/discount: For discount badges in our design

Notice how two different use cases can reference the same core token.

4.	 In the Value field, instead of adding another hex code, we’ll connect it to the core tokens we

created earlier. Click on the little arrow next to the input field and select the Red/500 token.

Utilizing Design Tokens for Consistency140

Repeat this process for the next semantic token.

Figure 6.14 – Reference tokens selection

5.	 When you select your desired design token, you will see the token name in brackets.

Figure 6.15 – Showcase of selected reference token

Chapter 6 141

Your sets should now look like the following figure:

Figure 6.16 – Token Studio list of tokens

Utilizing Design Tokens for Consistency142

Why should you use alias tokens? The power becomes clear when you need to make changes. If

you update the reference token (Red/500), the change automatically propagates to every alias

token connected to it. This means you can update a single core token and have the change reflected

across your entire design system instantly.

Applying design tokens to your design
Now that we’ve created our semantic tokens, let’s put them to use. Here’s how to apply these

tokens to your Figma designs. The process is the same for any token type, though each type can

only be applied to appropriate properties—you can’t apply a color token to font-size or a pix-

el-based token to a color property.

For beginners, Token Studio offers a more familiar approach: you can export your tokens as na-

tive Figma variables or styles. This means you can apply them using Figma’s standard interface

instead of learning about the plugin-based method. To do this, look for the export options in

Token Studio’s settings, which will create native Figma elements that you can use just like any

other variables or styles in your workflow.

However, if you prefer to work directly with Token Studio or want to see the tokens in action

immediately, here’s the plugin-based application process:

1.	 Create a simple element in Figma to apply the background/discount token to. A basic

rectangle will work perfectly.

2.	 With your element selected in the Figma design file, simply click on the token in Token

Studio, and it will be applied. Color tokens are applied to the most common property by

default:

•	 Fill (default option)

•	 Border

3.	 If you want to use this token for a border instead of a fill, right-click on the token in To-

ken Studio (or two-finger click on a touchpad). This will display all available application

options beyond the default.

Chapter 6 143

Figure 6.17 – Applying a design token

When you apply a token, you’ll notice a blue border around the element, as shown in the preced-

ing figure. This visual indicator helps you identify which elements have tokens applied to them.

Using the Inspect tab
The Inspect tab is a powerful feature for quality control. Here, you can see all design tokens applied

to any selected element. You can select an individual element, a group, or an entire component

to view all applied tokens at once.

Figure 6.18 – The Inspect panel in Token Studio

Utilizing Design Tokens for Consistency144

For example, if you select a button component from our Dotidot design system, you’ll see some-

thing like the following figure, showing all tokens applied to various properties of the button.

Figure 6.19 – The Inspect panel in Token Studio on the button element

Chapter 6 145

This tab is invaluable for checking components before publishing to ensure everything is applied

correctly. It helps you catch inconsistencies or missing token applications that might otherwise

go unnoticed.

Implementing Figma variables
After exploring Token Studio, let’s look at Figma’s native approach to design tokens: Figma vari-

ables. As I mentioned earlier, this approach might be preferable if you’re building a smaller design

system that will primarily live within Figma. It’s worth noting that variables now support better

dev mode integration than when initially launched, and will most likely keep improving, making

them increasingly valuable for design-to-development workflows. Let me guide you through the

process of setting up and using Figma variables.

First steps with variables
Unlike Token Studio, Figma variables are built directly into Figma, so you don’t need to use any

plugins to get started. Here’s how to begin:

1.	 Open your Figma file where you want to implement variables.

2.	 In the right sidebar, you should see a tab for Variables. Click on it to open the Variables

panel.

Figure 6.20 – Right sidebar in Figma

Utilizing Design Tokens for Consistency146

3.	 If this is your first time using variables in this file, you’ll see an empty state with a prompt

to create your first variable collection.

Variables in Figma are organized into collections, which are similar to the “sets” we created in

Token Studio. These collections help you categorize your variables logically.

If you want to visualize your variables in a different way or need help managing them, check

out the Variable Inspector plugin by Mr. Biscuits (https://www.figma.com/community/

plugin/1457362132545070106), which provides an alternative interface for working with Figma

variables.

Creating your first variable and collection
Let’s create our first collection following the same structure we used in Token Studio. Unfortu-

nately, Figma’s workflow is slightly different—you can’t start with empty collections, so you need

to create your first variable first and then work with the collection:

1.	 Click on + Create variable and select Color as the type.

2.	 Name it Red/500 and add your desired hex value.

3.	 You’ll notice Figma automatically creates a collection called Collection 1 in the top-left

corner of the Variables panel. Click on the three dots next to it and select Rename to

change it to Core.

Figure 6.21 – Figma variables collection

https://www.figma.com/community/plugin/1457362132545070106
https://www.figma.com/community/plugin/1457362132545070106

Chapter 6 147

You should now see a structure similar to what we created in Token Studio, as shown in the

preceding figure. This core collection will hold all your primitive values, such as colors, spacing,

and typography variables.

If you want to practice working with variables before implementing them in your own project, check

out Figma’s official variables playground in the community: https://www.figma.com/community/

file/1234936397107899445.

Creating semantic variables
Now that we have our core variables, let’s create semantic variables that reference them. In Figma,

we’ll need to create a new collection for these:

1.	 Click on the three dots next to your Core collection name and select Create collection.

2.	 Figma will automatically create a new collection with a default name such as Collection.

Click on the three dots next to this new collection and select Rename to change it to

Semantic.

3.	 With your Semantic collection selected, click on + Create variable.

4.	 Choose the appropriate type (Color, in this case).

5.	 Create two variables with semantic names that clearly describe their usage:

•	 text/error: For error messages in your design

•	 background/discount: For discount badges in your design

6.	 Instead of entering a direct value, click on the color selector and then Libraries. Here

you should see our already created core variables, such as Red/500. Select this variable

to create an alias connection. Now, your new text/error variable is connected to the

Red/500 core variable.

https://www.figma.com/community/file/1234936397107899445
https://www.figma.com/community/file/1234936397107899445

Utilizing Design Tokens for Consistency148

Figure 6.22 – Selecting an alias connection in Figma variables

The power of this approach is similar to what we saw in Token Studio—changes to core variables

will automatically propagate to all semantic variables that reference them.

Why should you use alias variables? The power becomes clear when you need to make changes. If

you update the reference variable (Red/500), the change automatically propagates to every alias

variable connected to it. This means you can update a single core variable and have the change

reflected across your entire design system instantly.

Chapter 6 149

Variable constraints and scoping
One powerful feature unique to Figma variables is the ability to set constraints on how variables

can be used. This helps maintain design system integrity by preventing misuse of tokens.

When creating or editing a variable, you can set scoping constraints that determine where the

variable can be applied:

•	 For color variables:

•	 Fill: Can be used as background colors, shape fills

•	 Frame: Can be used for frame backgrounds

•	 Shape: Can be used for shape elements

•	 Text: Can be used for text color

•	 Stroke: Can be used for borders and outlines

•	 Effects: Can be used for drop shadows and other effects

•	 For number variables:

•	 Corner radius: For border radius values

•	 Width and height: For element dimensions

•	 Gap (Auto layout): For spacing between elements in auto layout

•	 Text content: For general text-related values

•	 Stroke: For stroke width

•	 Layer opacity: For transparency values

•	 Effects: For effect-related values

•	 Typography-specific constraints:

•	 Font weight: For font weight values

•	 Font size: For font size values

•	 Line height: For line height values

•	 Letter spacing: For letter spacing values

•	 Paragraph spacing: For spacing between paragraphs

•	 Paragraph indent: For paragraph indentation

Utilizing Design Tokens for Consistency150

Why use constraints?
Constraints prevent common mistakes, such as accidentally using a font-size variable for spac-

ing or applying a border color to text. This is especially valuable in larger teams where multiple

designers work with the same variable system.

For example, you might create a number variable called typography/heading/large and constrain

it to Text content only. This ensures it can only be used for font sizes and related typography

properties, preventing someone from accidentally using it for spacing or dimensions.

This scoping feature is one advantage that Figma variables have over Token Studio, where such

constraints aren’t available. It adds an extra layer of protection for your design system’s consis-

tency.

Organizing collections for modes
When planning your variable structure, consider how you’ll use modes. Different types of vari-

ables often need different mode structures, which means you might want to organize them into

separate collections:

•	 Colors collection: You might create light/dark modes to handle theming:

•	 Light mode: text/primary = dark gray

•	 Dark mode: text/primary = light gray

•	 Spacing collection: You might create mobile/desktop modes for responsive design:

•	 Mobile mode: spacing/large = 16px

•	 Desktop mode: spacing/large = 24px

By separating colors and spacing into different collections, each can have its own relevant modes

without forcing unnecessary complexity. You don’t want to create light/dark modes for spacing

values that don’t change between themes, just as you don’t need mobile/desktop modes for colors

that stay the same across screen sizes.

This approach keeps your variable system clean and logical, with each collection focused on its

specific use case and mode requirements.

Chapter 6 151

Applying variables to designs
Applying variables to your designs in Figma is straightforward:

1.	 Select an element in your design.

2.	 In the property panel on the right, look for the property you want to apply a variable to

(such as Fill).

3.	 Click on the color selector and switch to Libraries.

4.	 Here, you can see all of your variables and styles. The dropdown isn’t the most UX-friendly,

so be careful with your selection—it’s easy to misclick.

Figure 6.23 – Styles and variables selection panel in Figma

5.	 Select the appropriate variable from the list.

Your element will now use the variable value, and you’ll see the variable name in the input where

you usually see the hex code of the color.

Variables versus styles
You might wonder how variables relate to Figma’s existing styles (color styles, text styles, etc.).

While they serve similar purposes, variables offer more flexibility:

•	 Variables can be referenced by other variables, creating a hierarchy

•	 Variables support different modes for theming

•	 Variables can be used for more properties than styles can

•	 Variables can store more types of data (such as numbers and Booleans)

Utilizing Design Tokens for Consistency152

That said, styles are still useful for certain cases, particularly for text styles that combine multiple

properties.

Version controlling design tokens with GitHub or
GitLab
A significant advantage of using Token Studio with GitHub is that GitHub is built for developer

needs, with excellent versioning capabilities built right in. This “simple” feature becomes in-

valuable when working with larger design systems. While you can use Figma’s native versioning

features, as I mentioned in Chapter 1, it’s not ideal for managing token changes specifically.

What’s the problem?
As design systems grow, so does the likelihood of making mistakes. When working with hundreds

of tokens across multiple collections, the possibility of error increases significantly. Having an

easy solution to revert to previous versions becomes crucial, especially when changes could affect

products across an entire organization.

How to fix it
You can leverage the power of GitHub itself. Here are the main benefits of using GitHub for version

controlling your design tokens:

•	 Comprehensive history tracking: Every commit (push from Token Studio to GitHub)

creates a record in the history, allowing you to see exactly what changed and when.

Figure 6.24 – Commits history in GitHub

•	 Visual change comparisons: You can see all changes in one simple view for quick reference,

with additions highlighted in green and deletions in red.

•	 Contributor tracking: GitHub automatically tracks who made which changes, providing

greater visibility when multiple people work on the same design system.

Chapter 6 153

If you need to check a previous version, you can access it with just a few clicks from the history.

You can also download the file and import it back into Token Studio for better testing before de-

ciding whether to roll back to that version. This workflow gives you a safety net that encourages

experimentation while minimizing risk.

Maintaining token documentation for cross-team
consistency
Documentation isn’t the most fun part of our job, but it’s necessary for success. Let me share a few

tips on how you can effectively manage documentation to ensure consistency for collaboration

between designers and developers.

What’s the problem?
When you’re designing something and spending dozens of hours in a complex web of design

tokens, it’s easy to think of certain decisions as “obvious.” But remember that many people will

encounter your design system for the first time and face a large, potentially intimidating structure.

Proper documentation isn’t only for developers—it’s crucial for your fellow designers as well.

Without clear documentation, your carefully crafted token system may go unused or be applied

inconsistently. New team members might struggle to understand the rationale behind certain

tokens, leading to the creation of duplicate tokens or inconsistent application across projects.

How to fix it
You have multiple ways to improve your documentation and information transfer. Here are some

tips to consider. Remember, even small steps will make a big impact, so start with something

manageable.

Show them visually
Design tokens may live in Token Studio or Figma variables, but designers and developers work

in the canvas in Figma. Make your tokens visible:

•	 For colors, create frames where each color is displayed

•	 For dimensions, show them visually so everyone can see the sequence

•	 For typography, display text examples using each typography token

Utilizing Design Tokens for Consistency154

Figure 6.25 – Typography documentation in Figma

Visual representation creates an immediate understanding that text descriptions alone can’t

achieve.

Proper categorization
This might seem obvious, but proper categorization is key. Don’t leave all your design tokens on

one page or frame. Display them across multiple pages with clear names that will help your team

find them quickly. Consider organizing by the following:

•	 Token type (colors, spacing, and typography)

•	 Usage domain (global or component-specific)

•	 Product area (if you have multiple products)

Use consistent vocabulary
I’ve mentioned this multiple times, but it bears repeating: use the same vocabulary across design

and development. This will save you countless hours and prevent many mistakes. When designers

say “spacing/medium” and developers say “gap-md,” confusion inevitably follows.

Proper naming
Consistent naming is crucial for semantic tokens and documentation. Every token’s purpose

should be obvious from its name. Choose naming conventions that clearly indicate the following:

•	 What the token is (color, spacing, etc.)

•	 Where it should be used (background, text, etc.)

Chapter 6 155

•	 Any variants or states (default, hover, etc.)

Token descriptions
For large design token sets, names alone aren’t enough—you’ll need additional descriptions.

Both Token Studio and Figma variables support descriptions, making it easier to document the

purpose and usage of each token.

In Token Studio, you can write descriptions directly into the design token itself. In Figma variables,

you can add descriptions by right-clicking on a variable and selecting Edit variable—you’ll find

a description field where you can document the token’s purpose and usage guidelines.

Connected descriptions in design
Token Studio has an amazing feature that allows you to connect token descriptions directly to

text elements in Figma. When you update the description, it automatically updates everywhere.

Here’s how to set it up:

1.	 Create an empty text element on your canvas.

2.	 Make sure your design token has a description. If not, edit the token and add one.

Figure 6.26 – Design token detail in Token Studio

Utilizing Design Tokens for Consistency156

3.	 Right-click on the design token you want to describe.

4.	 Select Documentation Tokens.

5.	 Choose Description.

That’s it—your text is now automatically synchronized. When you change the description in the

token, it updates in Figma as well. This also works for token names and values.

Figure 6.27 – Applying token documentation on a text element in Figma

What’s particularly powerful is that this syncing works with your GitHub repository, too. Devel-

opers can add or modify descriptions in GitHub, and with your next pull (synchronization from

GitHub), those changes will appear in your Figma file. This creates a true two-way documentation

system that keeps everyone aligned.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.

com/unlock, then search this book by

name.

Note: Keep your purchase invoice ready

before you start.

packtpub.com/unlock
packtpub.com/unlock

7
Building Accessible Design
Systems

Accessibility has become a critical topic for designers in recent years. A few years ago, I didn’t

give it much thought—it seemed like a complex, distant subject with limited resources available.

However, when the European Accessibility Act (EAA) was approved, the landscape changed dra-

matically. This legislation, which came into force in June 2025, requires companies across the EU

to make their digital products and services accessible to people with disabilities. The EAA applies

to companies with 10 or more employees and annual revenue above €2 million (micro-enterprises

with fewer than 10 employees and under €2 million annual turnover are exempt). Importantly,

this also affects non-EU companies that sell products or provide services to European consumers

through e-commerce, digital platforms, or online services. The consequences for non-compliance

include significant fines and potential exclusion from the European market, making accessibil-

ity not just a moral imperative but a business necessity. Accessibility suddenly became a much

broader conversation among designers, which is a positive shift. During this time, I discovered

how much I didn’t know and how my perspective on the topic had been misguided.

In this chapter, I want to share these insights with you—both from the perspective of a designer

and a C-level manager—to help you build more accessible products. I’m still learning in this field

every day, and I believe all of us as designers are continually learning because accessibility isn’t

just about design—it’s about communicating accessibility principles across companies and to

management.

Building Accessible Design Systems158

In this chapter, we’ll explore the following:

•	 Understanding the importance of accessibility in design

•	 Creating components with proper color contrast ratios

•	 Designing for keyboard accessibility and navigation

•	 Ensuring screen reader compatibility in your design system

•	 Documenting accessibility features in Figma

•	 Integrating WCAG standards into your design process

•	 Testing and validating accessibility across platforms

Let’s start with the first topic.

Understanding the importance of accessibility in
design
As I mentioned, I made the mistake of not taking accessibility seriously because it seemed distant

from my everyday experience. I don’t have anyone in my close circle with a disability, so I didn’t

think much about it—and this was the first problem. Accessibility isn’t only about permanent

disabilities, which is what I initially associated with the topic. It also encompasses temporary

conditions (such as a broken arm) and situational limitations (bright sunlight, working with

gloves, using a phone with one hand while carrying coffee or groceries, or my personal favorite—

sitting on a bumpy public transit ride). Even watching videos in a noisy environment or without

headphones shows how captions benefit everyone, not just people with hearing impairments.

What’s the problem?
Many managers view accessibility as a marginal topic that exists primarily because of regula-

tions. In start-up environments especially, you need to make tough decisions every day to pare

products down to their Minimum Viable Product (MVP), and accessibility often takes a back

seat. However, this approach is problematic because accessibility isn’t binary—it’s a scale. It’s

not simply a matter of “we have it” or “we don’t.” Rather, it’s about how comprehensively we

address it, and you can build on your approach incrementally.

Chapter 7 159

How to fix it
I want to describe the two worlds I inhabit: the design world and the C-level management world.

In both environments, you need to use different arguments to advocate for accessibility. Perhaps

you work in an organization where accessibility has been a priority from day one—if so, you’re

fortunate and might be able to skip this chapter. However, from my experience, this is rare, es-

pecially in smaller or mid-sized companies. In many workplaces, the primary motivation has

traditionally been fear of legal penalties, but this is gradually changing. I’m seeing a shift toward

a genuine understanding of why accessibility matters and how it makes our products better for

everyone. This evolution in thinking is crucial for meaningful progress.

Management perspective
I’ll start with this one because it’s straightforward. According to a Forrester study, approximately

1 billion people worldwide have some form of disability (https://www.forrester.com/blogs/

the-billion-customer-digital-accessibility-opportunity/). That’s an enormous market

that most managers overlook because they make the same mistake I did—they think only about

the small group of people with the most visible disabilities and don’t understand the range of

individuals included in this demographic. The Forrester study references $1.2 trillion in annual

disposable income. I wish I could tell you that other arguments are equally compelling, but num-

bers speak volumes here. Accessibility isn’t a niche concern—it’s about including a vast user base

that you may be inadvertently ignoring.

Designer perspective
As designers, we can do a lot in our day-to-day work without investing significantly more time.

Sometimes, all you need is a little knowledge about the topic to make a substantial difference

that you might not even realize. I encourage you to invest time in learning—watch videos, read

articles, listen to podcasts, or simply think about accessibility regularly. Remember, it’s a scale,

and some changes can be implemented quickly. For example, ensuring your colors have good

contrast won’t take much time, while implementing full descriptions for screen readers might

require more effort. You can choose where to start and begin with small changes that can make

a meaningful difference.

https://www.forrester.com/blogs/the-billion-customer-digital-accessibility-opportunity/
https://www.forrester.com/blogs/the-billion-customer-digital-accessibility-opportunity/

Building Accessible Design Systems160

Creating components with proper color contrast
ratios
Design systems are powerful tools for promoting accessibility adoption across your company.

Let’s start with one of the most straightforward “quick fixes”—color contrast. This issue has

an enormous impact even beyond traditional accessibility conversations. I’d venture to say that

proper contrast is generally addressed in most products because insufficient contrast significantly

impacts conversion rates. Nevertheless, let’s explore this topic more deeply.

What’s the problem?
Poor color contrast creates barriers for many users, not just those with diagnosed visual impair-

ments. When text blends too closely with its background, it becomes difficult or impossible to read,

leading to user frustration and potential abandonment of your product. When I was starting in

design, many designers chose colors based purely on aesthetic preferences without considering

their functional impact on readability. Thankfully, the situation is much better now, with greater

awareness around contrast requirements and their importance.

This issue extends beyond obvious cases such as light gray text on white backgrounds. Even

seemingly clear color combinations can fail to meet accessibility standards when measured ob-

jectively. Additionally, what appears legible on your high-end monitor might be nearly invisible

on other devices or in different lighting conditions. When I was actively designing websites and

apps, I always kept reference devices next to me. For desktop designs, I had the cheapest Full HD

monitor plugged in alongside my main display. For mobile apps, I kept a budget Android phone

and an iPhone SE nearby to always check the “reality” of my designs—not just how they looked on

my high-end device, where everything appears amazing because the device cost a few thousand

dollars. This simple practice helped me catch contrast issues that would have otherwise slipped

through, especially with subtle color combinations that might be perfectly visible on a premium

device but barely distinguishable on average consumer devices.

Consider everyday scenarios that affect everyone: working in bright office lighting or outdoors can

wash out screens, while battery saver mode makes displays dimmer to conserve power. These com-

mon situations mean that good contrast benefits all users, not just those with visual impairments.

Chapter 7 161

How to fix it
Adequate contrast between text (or icons) and background is vital so that users with low vision

or color vision deficiencies can read content easily. The WCAG guidelines recommend a contrast

ratio of at least 4.5:1 for regular body text and 3:1 for large text (typically 18px+ or bold 14px+),

as these thresholds significantly improve readability.

Figma Color Contrast Checker
In the past, we had to rely on plugins to check contrast ratios. I mentioned Stark in Chapter 2, but

fortunately, one of the releases in 2025 introduced this feature natively within Figma’s color palette.

Every element with color can be automatically checked against its background element. For

example, text is checked against its parent frame. Without a frame, it will be checked against

the canvas color.

Here’s how to use this feature:

1.	 Click on the Check color contrast option on the right side of the color picker.

2.	 This tab will display a different color picker where you’ll immediately see the contrast

ratio and can adjust various settings.

3.	 The main settings you can modify are based on context (large text, normal text, graphics)

and your target compliance level (AA or AAA). For EAA compliance, you need to meet at

least the AA standard.

4.	 Based on these settings, you’ll see whether your color choice follows WCAG guidelines.

Figure 7.1 – Figma Contrast Checker

Building Accessible Design Systems162

I recommend building a small testing environment (with typical screens where you’ll use these

tokens) alongside your design system. This allows you to quickly see many “real” cases where

tokens will be used together. While Figma’s native contrast checker is perfect when you’re cre-

ating design tokens and working on individual components, if you want to audit a whole project

or design system, use Stark. The Stark plugin can do much more than just contrast checking and

offers bulk auditing capabilities that can scan entire design files, checking multiple accessibility

issues across all your components at once.

Multiple design token sets/modes
One of the great use cases for Tokens Studio is that you can build multiple Token Sets. Figma

variables also support multiple modes, but you’re limited to 4 (Professional and Organization

pricing plans) or 40 (Enterprise plan). Given this limitation, I haven’t encountered anyone using

modes for this purpose, so I’ll focus on Token Sets.

You can create different Token Sets that help you manage contrast ratios. For example, your base-

line goal might be to meet AA standards, but you can easily build a new token set aimed at AAA

compliance and give users the option to switch to it in their app settings. I found this approach

in one of my favorite games, Star Wars Battlefront II. You can easily change the design Token Set

to be more inclusive.

Figure 7.2 – Star Wars Battlefront II settings

If you want to learn more about using Token Studio, check out Chapter 6, where we covered this

topic in detail.

Looking ahead—Advanced Perceptual Contrast Algorithm
(APCA)
If you’re reading this after mid-2025, you might want to explore APCA as well. The Advanced

Perceptual Contrast Algorithm is a new method for calculating contrast that’s expected to be

part of WCAG 3.0. Unlike WCAG 2.1’s simple ratio system, APCA takes into account font size and

font weight, and provides perceptually accurate contrast measurements across all color ranges.

Chapter 7 163

Right now, WCAG 2.1 AA remains the standard that regulations such as the EEA reference, so stick

with those guidelines for compliance. However, APCA offers more accurate readability predic-

tions and can help you make better color choices, especially for mid-range colors where WCAG

2.1 sometimes falls short. You can experiment with APCA at https://apcacontrast.com/ to see

how it compares to traditional contrast checking and get a sense of what the future of accessible

color contrast might look like.

Designing for keyboard accessibility and navigation
Our designs are mainly built around mouse/trackpad interaction or touch on phones, but not

everyone can operate these input methods. If you’ve had a broken arm in the past, you know

exactly what I mean. If not, try using your favorite website without a mouse and you’ll quickly

see how hard or easy it can be (depending on the team’s approach to accessibility). Even com-

mon situations, such as a laptop trackpad not working or using a computer at a small standing

desk setup where reaching for a mouse is inconvenient, show how keyboard navigation benefits

everyone, not just people with motor impairments.

What’s the problem?
Not everyone can operate a mouse or a touch interface. What’s interesting is that this limitation

can be very easily simulated by you, allowing you to see firsthand how your product performs. A

good rule of thumb is: if an action can be done with a mouse, it must be doable with a keyboard as well,

and any interactive element should receive a visible focus indicator when navigated via keyboard.

There can be significant problems with tab ordering that we’ll explain.

How to fix it
I want to focus on three main areas that you can improve:

•	 Focus states

•	 Movement order

•	 Proper file handoff

Focus states
First, the easiest things to check are clear focus states for buttons, links, form fields, and so on.

These should use an outline or highlight that meets contrast guidelines, making them easy to spot.

You can test this on any website by pressing the Tab key and observing how elements respond.

https://apcacontrast.com/

Building Accessible Design Systems164

The good news is that most browsers have focus states built in, but sometimes you’ll want to

customize them. If you do, be extra careful. The default color is light blue, which isn’t always the

best option. Consider using a different color with better contrast—for example, a thick yellow

outline can work much better (you can see this approach in action in the UK Government Design

System: https://design-system.service.gov.uk/get-started/focus-states/).

Figure 7.3 – Custom focus state from UK Government Design System

Always check the contrast of your custom focus states if you need to change the default ones.

Movement order
Try visiting your favorite website and pressing the Tab key repeatedly. You should move through

the page from left to right and top to bottom on English-language websites, and you should be

able to reach all needed elements. This tab order is crucial because it directly affects usability,

and it’s entirely within your control.

A common problem I’ve observed on many websites involves cookie consent banners that are

placed at the bottom of the code (and thus the tab order). This forces users who navigate by key-

board to tab through the entire page before they can interact with this essential element, which

is incredibly frustrating. Try testing for this issue on various websites—it’s more common than

you might think.

Tab order can become particularly challenging when you add certain popups (modals) or complex

vertical hierarchies to your site. Always test the production code before releasing it. But how do

you incorporate tab order into your design process? Let’s explore that now.

https://design-system.service.gov.uk/get-started/focus-states/

Chapter 7 165

Proper file handoff
If we focus on how to improve Figma files and avoid leaving tab order to chance or the development

team’s discretion, I want to tell you about an amazing plugin supported by Microsoft: A11y - Focus

Order (https://www.figma.com/community/plugin/731310036968334777/a11y-focus-order).

This plugin helps you add annotations to your designs that show developers your intended tab

order for building the final product.

I created a simple demonstration app using Figma’s First Draft AI feature (don’t focus on the

design quality). This plugin helps you build automatic documentation for developers in seconds.

Here’s how it works:

1.	 Open the plugin and select the frame you want to document (annotate).

2.	 Select elements in the frame and click Add.

3.	 Choose the appropriate component type based on guidelines (W3C for web, iOS, or An-

droid) and add any necessary additional information, such as descriptions.

4.	 The plugin quickly creates new layers with numbered references indicating your intended

tab order, along with descriptions next to the design.

Figure 7.4 – Focus order handoff via A11y plugin

https://www.figma.com/community/plugin/731310036968334777/a11y-focus-order

Building Accessible Design Systems166

This process is super fast, and you can easily change the order by simply dragging items up and

down—the documentation updates automatically. For complex layouts, such as sites with nav-

igation at the bottom of the screen (as in my example), spend an afternoon experimenting with

the plugin to make developers’ jobs much easier.

You can also include additional information about keyboard navigation, such as using arrow keys

for carousels or keyboard shortcuts. For example, you might note that the Esc key should close

modals and the Enter key should select items in drop-down menus.

Additional plugin for comprehensive accessibility annotations
One of my beta readers also recommended the Include Accessibility Annotations plugin

(https://www.figma.com/community/plugin/1208180794570801545/include-accessibility-

annotations), which offers a more comprehensive approach to accessibility documentation. Built

by the accessibility and design teams at eBay, Include provides step-by-step guidance for both

web and native annotations.

The plugin includes features such as landmarks, focus grouping, headings, reading order, touch

targets, alternative text detection, contrast checking, and even color deficiency simulation. While

the A11y - Focus Order plugin excels at tab order documentation, Include covers a broader range

of accessibility considerations, making it valuable for teams that want to document accessibility

requirements comprehensively across their entire design system.

Ensuring screen reader compatibility in your design
system
Screen readers are essential tools for users with visual impairments. Before I dive into this top-

ic, I want to share a small disclaimer: I didn’t design specifically for screen readers in my daily

work. What I’ll share comes from conversations with other designers and my own research. I’d

love to tell you that I’m an expert in this area, but in reality, I’m still learning—and I want to be

transparent with you from the start.

What’s the problem?
Screen readers do exactly what their name suggests—they read content on the screen. But it’s

not that simple, because they can only work with what you (or mainly developers) provide to

them. Without proper structure, meaningful alt text, and semantic markup, screen readers face

significant challenges.

https://www.figma.com/community/plugin/1208180794570801545/include-accessibility-annotations
https://www.figma.com/community/plugin/1208180794570801545/include-accessibility-annotations

Chapter 7 167

You can experience this firsthand by trying a screen reader on any website—the results can be

eye-opening. On Windows, use the shortcut Control + Windows + Enter, and on macOS, use Com-

mand + F5 to activate the built-in screen readers. Try navigating your own website or a well-built

one such as a major news outlet. You’ll quickly understand how different the experience can be

when content isn’t properly structured for accessibility.

How to fix it
Let’s focus on practical steps you can include in your design system to help your developers build

better experiences for screen reader users. Remember that this work requires active involvement

from your development team as well—there are aspects of screen reader compatibility that are

beyond what designers can fully address on their own.

Alternative text
First, let’s clarify what alt text (alternative text) is: it’s the brief description attached to an image

or icon that screen readers will read aloud to users who can’t see the visual element. Let’s check

a short list of what to do:

•	 Create standardized alt text guidelines: Build your design system documentation with

simple rules such as “describe meaning or function.” For example, all close icons should

have alt text that begins with “Close [context]” (e.g., “Close settings panel”). Don’t start

with phrases such as “Icon description” or “Image description” because screen readers

will already announce the element type (“image”) before reading your alt text, creating

redundancy.

•	 Include alt text fields in components: Add dedicated alt text input fields to your compo-

nent properties in Figma. This serves as a constant reminder for designers to fill them out.

How often do you actually add alt text to your designs for developers? Having this built

into your components makes it a natural part of the workflow rather than an afterthought.

•	 Document icon meanings: Create a comprehensive library of your icons with their in-

tended meanings in your design system documentation. Developers can reference this

when implementing alt text, ensuring consistency across your product.

Building Accessible Design Systems168

Semantic structure
Screen readers need “rails” to follow as they navigate content. Your job is to create a clear path

through proper semantic structure. While much of this falls to developers during implementation,

designers can and should establish guidelines before development begins.

•	 Create clear heading hierarchies: Design your text sections with a logical heading struc-

ture using Heading 1 (H1) through Heading 6 (H6). This isn’t just about visual differences

in size—it provides essential navigation landmarks for screen reader users. A common

mistake I’ve seen is designers using a style named “Heading 1” repeatedly throughout

a website simply because it looks appealing. This practice confuses screen readers and

harms both accessibility and SEO (Search Engine Optimization, which affects how well

your site ranks in search results).

•	 Group related content blocks: In your designs, visually group related components togeth-

er and document these relationships. While the final implementation happens in code,

your designs can guide developers toward proper grouping. For example, when building

forms, keep labels, input fields, and error messages visually connected and indicate in

your documentation that they should be grouped semantically in the code.

•	 Design with accessibility in mind: Let’s continue with the forms example, where I fre-

quently see a common problem: the use of placeholder text instead of proper labels. This

approach fails not just from an accessibility standpoint but from general UX principles

as well. Every input field needs a persistent, visible label—placeholders disappear when

users start typing, leaving them without context if they get distracted.

•	 Use multiple requirement indicators: For required form fields, use multiple indicators

that help all users understand what’s mandatory. Relying solely on color (such as red

asterisks) isn’t sufficient—include text markers such as “(required)” or an asterisk with

a legend explaining its meaning. Avoid indicating required fields through only bold text

or color differences, as these cues aren’t accessible to all users.

There should typically be only one H1 per page, followed by H2s as section

headers, and so on.

Chapter 7 169

•	 Prioritize clear text: While visual elements such as icons and images enhance the expe-

rience for sighted users, screen reader users rely entirely on text and alt text. Sometimes

we don’t invest enough time in writing clear, descriptive text because there’s an amazing

icon or image that “tells the whole story.” This approach excludes users who can’t see

those visual elements. Make sure your content stands on its own without visual support.

Accessible Rich Internet Applications (ARIA)
ARIA (officially WAI-ARIA) is a W3C specification that adds extra semantics to HTML so assistive

technologies—screen readers, braille displays, voice control, switch devices—can understand

and interact with complex web UI components.

This is primarily the development team’s responsibility and concerns the underlying code struc-

ture. I won’t go into great depth here, as I mentioned at the beginning of this section that I’m not

an expert on this topic. However, it’s important to know that these standards exist so you can

initiate conversations with your development team about implementing them.

Some basic ARIA concepts that designers should be familiar with include the following:

•	 ARIA landmarks: These define regions of the page (navigation, main content, search, etc.)

that help screen reader users navigate more efficiently

•	 ARIA states and properties: These communicate the current state of interactive elements

(expanded/collapsed, checked/unchecked, etc.) to assistive technologies

•	 ARIA live regions: These announce dynamic content changes (such as error messages or

notifications) to screen reader users without requiring them to navigate to that content

In your design system documentation, you can include recommendations for when and how

developers should implement these ARIA attributes based on your components. While you don’t

need to specify the exact code, you can note which components should have particular ARIA

roles or states.

Testing with real screen readers
The most effective way to ensure your designs work well with screen readers is to test them. En-

courage both designers and developers to do the following:

•	 Learn basic screen reader commands: Familiarize yourself with the basic navigation

commands of at least one screen reader. You can test your website using the built-in

screen readers: on Windows, use the shortcut Control + Windows + Enter, and on macOS,

use Command + F5.

Building Accessible Design Systems170

•	 Test components individually: Before integrating components into larger designs, test

them individually with a screen reader to identify and fix issues early. You can test them

in tools such as Storybook before they’re distributed to all developers, making it easier

to isolate and address accessibility issues at the component level.

By incorporating these practices into your design system, you’ll create a foundation for more ac-

cessible products that work well with screen readers. Remember that this is an ongoing learning

process—even experienced accessibility specialists continue to discover new ways to improve

screen reader compatibility.

Documenting accessibility features in Figma
Documentation is a topic we’ve discussed in many previous chapters, and it’s equally relevant

here. I’ll admit that I’ve been one of those managers who have sometimes pushed documentation

aside as non-critical when facing tight deadlines. In small, stable teams where people rarely leave,

this approach might work to some extent. But for larger teams—and especially for accessibili-

ty—this simply isn’t effective. Accessibility remains a relatively new concept for many designers

and developers, and it encompasses numerous considerations that aren’t immediately obvious.

These details need to be explicitly documented and shared.

What’s the problem?
Many design systems thoroughly document components from visual and functional perspectives

(how they look and behave in their basic state) but neglect accessibility considerations. This creates

a significant gap in understanding how components should be implemented to support all users.

I believe we should include as much documentation as possible directly within Figma, since that’s

where designers and developers are already working. While there are excellent external documen-

tation tools, such as Czech Supernova (try them out and tell them you heard about them from

me), for small to mid-sized projects, Figma itself can be a perfectly adequate documentation hub.

How to fix it
Let’s explore several methods you can implement in your process. As always, choose what best

suits your team’s specific needs—even small changes can make a meaningful difference.

Chapter 7 171

Component documentation
Here are the key strategies for documenting accessibility within your component system:

1.	 Leverage component descriptions in Figma: This often-overlooked feature provides a

dedicated space to communicate important information. Use it to explain accessibility

considerations specific to each component. For example, for a drop-down menu, you

might note Ensure keyboard navigation with arrow keys and tab focusing. Must be

operable with screen readers announcing current selection.

Figure 7.5 – Part of our Dotidot component documentation

2.	 Add accessibility sections to component documentation: When you create documen-

tation templates for components, include a dedicated accessibility section by default.

When this section exists but remains empty, it creates a visible reminder that something

is incomplete—pushing you and your team to fill it in. If you think, “We’ll add this section

in the future when we have time,” let’s be honest—you probably won’t. Building it into

your documentation structure from the beginning creates accountability.

3.	 Document all states, including focus states: Ensure your component documentation

includes every possible state, paying particular attention to focus states for interactive

elements. Too often, focus states are treated as an afterthought, but they’re essential for

keyboard navigation. Document not just how they look, but also the expected behavior

(tab order, keyboard shortcuts, etc.).

Building Accessible Design Systems172

Dedicated accessibility documentation
Create a dedicated space in your design system for accessibility-specific documentation. By allo-

cating this space upfront, you establish an expectation that it will be filled with valuable infor-

mation. Here’s what to include:

•	 Accessibility guidelines: Develop a comprehensive guide explaining the fundamental

principles of accessibility, why it matters for your products, and your team’s approach to

implementing it. Include specific standards you’re following (WCAG 2.1 AA, for example)

and any company-specific requirements or priorities.

•	 Learning resources: Incorporate articles, videos, and explanations directly into your Figma

file to help team members who are new to accessibility. Don’t just send developers or new

designers off to Google or ChatGPT for information—provide curated, validated resources

that align with your team’s approach. This might include the following:

•	 Links to trusted accessibility resources (WebAIM, A11Y Project)

•	 Explanatory videos about screen reader testing

•	 Examples of accessible and inaccessible patterns with explanations

•	 Checklists for designers and developers to reference during their work

•	 Testing procedures: Document how your team should test for accessibility, including

which tools to use, what to look for, and how to report issues. This creates consistency in

your approach to identifying and resolving accessibility problems.

•	 Team responsibilities: Clarify who is responsible for different aspects of accessibility

implementation. Is color contrast the designer’s responsibility? Who ensures that proper

ARIA attributes are implemented? By documenting these expectations, you prevent im-

portant considerations from falling through the cracks.

By thoroughly documenting accessibility features directly in Figma, you make it much easier

for your team to create consistently accessible products. You also reduce the learning curve for

new team members and create a valuable reference that evolves alongside your design system.

Remember that good documentation isn’t static—update it regularly as you learn more about

accessibility best practices and as your components evolve.

Chapter 7 173

Accessibility acceptance criteria in user stories and tickets
One area that many teams overlook is including accessibility requirements directly in their devel-

opment workflows through user stories and tickets. This bridges the gap between your beautifully

documented Figma files and the actual development work.

How to include accessibility in user stories
When writing user stories or creating development tickets, include specific accessibility accep-

tance criteria alongside your functional requirements. This ensures accessibility isn’t treated as

an optional add-on but as a core requirement for the feature to be considered complete.

Here are some practical examples of how to structure accessibility acceptance criteria:

For a button component:

•	 The button must be keyboard accessible (Tab to focus, Enter/Space to activate)

•	 The focus state must be visible with a 3:1 contrast ratio against the background

•	 The button text must have a 4.5:1 contrast ratio in all states

•	 The screen reader must announce the button’s purpose and current state

•	 The button must include appropriate ARIA attributes if it toggles content

For a form:

•	 All form fields must have persistent, visible labels

•	 Required fields must be indicated with both visual and text indicators

•	 Error messages must be announced to screen readers when they appear

•	 Form must be completeable using only keyboard navigation

•	 Field validation must not rely solely on color

For a modal dialog:

•	 The focus must be trapped within the modal when open

•	 The Esc key must close the modal

•	 The focus must return to the trigger element when the modal closes

•	 The modal must be announced to screen readers when it opens

•	 Background content must be hidden from screen readers while the modal is active

Building Accessible Design Systems174

Integration with your workflow
Work with your product managers and developers to establish these accessibility criteria as stan-

dard practice. When you hand off designs, reference the specific accessibility requirements in the

development tickets. This creates accountability and ensures that accessibility considerations

don’t get lost in translation from design to development.

You can even create a template or checklist of common accessibility criteria that can be quickly

adapted for different types of components or features. This standardizes the process and makes

it easier for your team to consistently include accessibility requirements in their planning and

development work.

Integrating WCAG standards into your design
process
Web Content Accessibility Guidelines (WCAG) are the foundation of accessible design. Unfortu-

nately, they’re often viewed as a long and complex checklist of requirements you need to satisfy

to make your product “accessible.” I want to show you that this checklist approach isn’t the best

solution and demonstrate how to work with these standards to improve accessibility without

creating additional overhead in your workflow.

What’s the problem?
WCAG has become the industry standard for measuring accessibility compliance across three

main levels (A, AA, AAA). You might remember these from our discussion about color contrast

earlier in this chapter. These guidelines should help us design better, more inclusive products,

but they can often feel very technical and, let’s be honest, quite boring to read through.

The design industry is slowly improving its approach to accessibility, but I’ll admit that even I’ve

made this mistake in the past: we’d design something and then check it against WCAG guidelines

afterward, trying to “fix” the biggest issues. This retrofit approach isn’t ideal or sustainable. It

creates more work, often compromises the original design vision, and frequently results in ac-

cessibility solutions that feel tacked on rather than thoughtfully integrated.

Chapter 7 175

How to fix it
The key is to integrate WCAG principles into your design process from the beginning, rather than

treating them as an afterthought. Here’s how to make this integration seamless and effective:

•	 Start with understanding

•	 Design tokens are your best friend

•	 Build WCAG into your components

•	 Use AI assistants strategically

•	 Train yourself and your team

•	 Remember the scale

Start with understanding
Before implementing any workflows, invest time in reading through the design-focused guides

available at https://www.w3.org/WAI/tips/designing/ or https://www.wcag.com/designers/.

These resources will help shift your perspective on accessibility from a compliance checkbox to

a design consideration.

Many of these guidelines will seem like common knowledge—which is actually encouraging! It

means you’re already thinking about some accessibility principles. However, reading through

them systematically helps you internalize the reasoning behind each guideline and recognize

opportunities to implement them more consistently.

Design tokens are your best friend
Remember our discussion about design tokens and Figma variables in Chapter 6? If this topic is

new to you, please review that chapter before continuing here. Design tokens offer one of the

most effective ways to bake WCAG compliance into your design system from the ground up.

When you implement WCAG standards directly into your tokens, you solve potential accessibility

issues at their source, eliminating the need to revisit and fix them later. Focus on meeting at least

AA standards for background-to-foreground color contrast (text on backgrounds). Fortunately,

you can now quickly check this directly in Figma using the built-in Figma Contrast Checker we

discussed earlier.

Beyond colors, consider typography when creating composite tokens. Proper text spacing and line

height are essential for readability. Remember that even you might find yourself in situational

limitations where good typography becomes crucial for your product to be used normally – for

example, as I mentioned, bumpy public transport.

https://www.w3.org/WAI/tips/designing/
https://www.wcag.com/designers/

Building Accessible Design Systems176

When building typography tokens, focus on these key accessibility considerations:

•	 Font size and scaling: Establish minimum font sizes (typically 16px for body text) and

use relative units that scale properly when users zoom up to 200%. Test your typography

tokens at different zoom levels to ensure text remains readable.

•	 Line height ratios: Set line height between 1.4 and 1.6 times the font size for body text.

Tighter line heights can make text difficult to read, especially for people with dyslexia or

visual processing difficulties.

•	 Font selection: Choose fonts that remain clear at small sizes and avoid overly decorative

typefaces for body text. Sans-serif fonts often work better for digital interfaces, though

well-designed serif fonts can also be accessible.

•	 Text spacing: Include adequate spacing between paragraphs and sections. Dense text

blocks are harder to navigate, especially for screen reader users who rely on clear content

structure.

If you’re using design tokens to standardize animations, create stricter guidelines for speed and

complex motion. While complex animations might look “cool,” they can be challenging to make

inclusive unless you’re focusing specifically on accessibility considerations. Consider providing

reduced-motion alternatives for users who prefer less visual movement or adding an option to

disable all animations with a single click. Microsoft uses this approach on its websites, so go

check them out for reference.

Build WCAG into your components
Components are your building blocks, and in my experience, it’s much harder to retroactively

rebuild them to meet accessibility standards. Trust me, I’ve made this mistake multiple times,

and honestly, I sometimes still do it because I’m not designing as actively as I used to. It’s much

easier to build components correctly from day one.

For complex components, you probably already sit down before creating them to properly plan

all variants, states, and how they’ll be built. Now it’s time to add one additional planning step:

identifying applicable WCAG success criteria.

Before you start designing, create a list of the WCAG criteria you want to meet for each compo-

nent, and let these guide both your design and development process. This proactive approach

ensures accessibility considerations influence your design decisions rather than constraining

them afterward.

Chapter 7 177

Make sure to agree with your team on your target compliance level. There’s a significant difference

between A, AA, and AAA standards. I’d recommend focusing on AA compliance as your baseline,

with AAA for critical components, especially considering the EAA requirements.

Use AI assistants strategically
AI tools such as ChatGPT or Claude can be invaluable helpers for understanding accessibility re-

quirements. Since accessibility is a new topic for many designers and can involve lengthy, technical

documentation, don’t hesitate to ask questions and share screenshots for analysis.

Here’s a helpful prompt you can use with AI assistants to check WCAG compliance for your com-

ponents:

"I’m designing a [component type] for a web application. Can you help me identify the relevant WCAG

2.1 AA success criteria I should consider? Here are the component details: [describe functionality, user

interactions, visual elements]. Please provide specific guidance on how to ensure this component meets

accessibility standards, including any potential issues I should watch for and testing recommendations.”

Follow up by sharing screenshots or Figma links to get more specific feedback on your designs.

Train yourself and your team
Knowledge is power, so share it actively within your team. When you discover useful resources

or learn from mistakes, document and share these insights. Accessibility is complex, and you

don’t need to tackle it alone.

Conduct regular accessibility reviews of your design system components. These audits serve a dual

purpose: they improve your design system’s accessibility while building your team’s knowledge

and confidence in addressing accessibility challenges.

Remember the scale
Always keep in mind that accessibility isn’t a yes-or-no question. It’s a scale. You don’t need to

achieve perfect accessibility overnight. Start with foundational improvements such as color con-

trast and keyboard navigation, then gradually expand your focus to more complex considerations

such as screen reader compatibility and advanced ARIA implementations.

Building Accessible Design Systems178

Every improvement you make benefits your users, even if you haven’t achieved full AAA compli-

ance across every component. Progress is more valuable than perfection, especially when that

progress is sustainable and builds momentum for further improvements.

Testing and validating accessibility across platforms
You can test your accessibility in two main places: in Figma before development and in code after

development. Both places are important, but honestly, the main testing happens in the code. An

amazingly prepared Figma file with all the states, documentation, alt text, and accessibility con-

siderations means nothing without proper implementation. However, you can still significantly

help your developers by preparing your files properly from the start.

What’s the problem?
I’ve seen multiple times that designers don’t want to take responsibility for the production code,

but as I’ve said repeatedly throughout this book, the final output isn’t a Figma file but production

code. You, as a designer, need to take responsibility for the final product and help your developers

achieve the best possible implementation.

Many teams treat accessibility testing as an afterthought, checking for issues only after every-

thing is built. This approach creates more work and often results in compromises that could

have been avoided with earlier testing. Additionally, designers often feel intimidated by testing

in code, thinking it’s outside their expertise, but there are many accessibility tests that designers

can and should perform.

How to fix it
As I mentioned, there are two main environments where you can test your accessibility solutions.

Let’s explore both of them and the specific techniques you can use in each.

Testing in Figma
In Figma, you can establish processes to hand off your designs in better shape than before, helping

developers build more accessible products from the start.

Contrast checking
As I’ve mentioned multiple times throughout this chapter, check the contrast of your colors ideally

at the design token level before you share designs with developers. You can use Figma’s native

color contrast checking tool or plugins such as Stark to perform bulk contrast checks across your

entire design system.

Chapter 7 179

Make this part of your design review process. Don’t wait until the end of a project to discover

contrast issues that require you to rebuild components or reconsider your color palette.

Color blindness simulation
This was honestly my first introduction to accessibility testing years back when I tried a Figma

plugin that showed me how people with different visual impairments see my designs. I tried

it more than 5 years ago, and I still recommend it today: Color Blind by Sam Mason de Caires

(https://www.figma.com/community/plugin/733343906244951586/color-blind).

Figure 7.6 – Color blind plugin test

Running your designs through color blindness simulation helps you identify when you’re relying

too heavily on color alone to convey information. This is particularly important for status indi-

cators, error states, and interactive elements.

https://www.figma.com/community/plugin/733343906244951586/color-blind

Building Accessible Design Systems180

Map edge cases
Try to build your designs and components with edge cases in mind. For example, test how your

design looks when someone zooms to 200% (making text 200% bigger). One of my weird habits

is that when I’m on the metro, I never use my phone and instead watch how others work and

play on their devices. Very often, you can see older people with settings that make their text much

larger, and you’ll quickly spot the problems.

For example, in many popular messaging apps, names start to truncate with “...” when text is

enlarged. I once saw a lady with a whole list of WhatsApp contacts showing only first names

(very common first names in the Czech Republic) without surnames. She needed to check every

chat before finding the right person. Think about these scenarios, and sometimes just observe

the world around you. You’re designers, after all.

Set component guidelines
Components are the building blocks of your design, and it’s much easier when they’re built cor-

rectly with accessibility in mind from the start. Set up clear guidelines for your team. Many of

these I’ve already mentioned throughout this chapter, but here’s a consolidated checklist:

•	 Remember all states (especially focus states for interactive elements)

•	 Check the usage of correct design tokens before handoff

•	 Images need to have appropriate alternative text (descriptive alt text for informative

images, empty alt=”” for purely decorative images)

•	 Add accessibility sections to component documentation

•	 Include keyboard navigation instructions where relevant

•	 Document expected ARIA attributes for complex components

•	 Specify tab order for complex layouts

Testing in code
Even as a designer, you can test many accessibility aspects in the production code, though some

tests will require developer involvement.

Chapter 7 181

Cross-browser and cross-platform testing
This shouldn’t be tied only to accessibility, but please check your product on something other

than MacBooks and Safari. I once worked with a team that was building keyboard shortcuts into

their product. They had a company policy that everyone used only MacBooks. Maybe you know

where I’m going with this. When I found out they didn’t have shortcuts working on Windows,

their reaction was “Oh, we didn’t think about that.” By the way, based on Google Analytics, 70%

of their users were on Windows.

Test your accessibility features across different browsers, operating systems, and devices. What

works perfectly on Chrome might have issues in Firefox or Safari. What works on desktop might

break on mobile.

Keyboard testing
You can launch your product and try hitting Tab to move forward or Shift + Tab to move backward

through interactive elements. You can test the tab order very quickly and give immediate feedback

to your developers about any issues you discover.

Pay attention to the following:

•	 Can you reach all interactive elements using only the keyboard?

•	 Is the tab order logical and does it follow the visual flow of the page?

•	 Are focus indicators clearly visible on all interactive elements?

•	 Can you activate buttons, links, and form elements using Enter or the Spacebar?

•	 Can you close modals and dropdowns using the Esc key?

Screen reader testing
Very similar to keyboard testing, just open your product and activate the built-in screen readers:

Ctrl + Windows + Enter on Windows, or Command + F5 on macOS.

Listen to how your content is announced and whether the information makes sense without

visual context. This gives you immediate insight into the screen reader experience and helps you

identify areas where additional labels or descriptions might be needed.

Building Accessible Design Systems182

Automatic testing (designer-friendly)
You can test your product using automated tools that don’t require development knowledge.

For example, add the amazing extension “Accessibility Insights for Web” to Chrome (https://
chromewebstore.google.com/detail/accessibility-insights-fo/pbjjkligggfmakdaogkfomd

dhfmpjeni). This extension will scan your page and give you quick wins to focus on, highlighting

issues with clear explanations of what’s wrong and how to fix it.

Figure 7.7 – Quick showcase of Dotidot About Us page that needs some improvements

Automatic testing (developer-required)
Your development team almost certainly (okay, maybe 99% certain) has automated tests covering

different user flows and states in your product. Work with them to add automated accessibility

tests that cover the main accessibility pain points. This ensures that before every release, the

system checks whether everything meets your accessibility standards.

https://chromewebstore.google.com/detail/accessibility-insights-fo/pbjjkligggfmakdaogkfomddhfmpjeni
https://chromewebstore.google.com/detail/accessibility-insights-fo/pbjjkligggfmakdaogkfomddhfmpjeni
https://chromewebstore.google.com/detail/accessibility-insights-fo/pbjjkligggfmakdaogkfomddhfmpjeni

Chapter 7 183

The most popular tool for this is axe-core (https://github.com/dequelabs/axe-core), an open

source accessibility testing library created by Deque Systems. axe-core can be integrated directly

into automated testing pipelines, allowing developers to catch accessibility issues as part of

their regular development workflow. It’s the same technology that powers tools such as Google

Lighthouse and many browser extensions, so it’s battle-tested and widely trusted.

What makes axe-core particularly valuable is that developers can set it up to automatically

check every code change for accessibility problems before the website goes live. Think of it like a

spell-checker, but for accessibility. If the code has accessibility issues, the system can prevent the

update from being published until those problems are fixed. This means accessibility becomes a

must-have requirement, not something that gets skipped when deadlines are tight.

Deque (https://www.deque.com/) offers enterprise tools built on top of axe-core that provide

additional features such as reporting dashboards and advanced integrations, but the core testing

engine is free and open source, making it accessible to teams of all sizes.

User testing with actual users
This is, of course, the best approach. Invite users from your target demographic who can test

your product and provide direct feedback about their experience. In reality, you need substantial

resources to conduct proper accessibility user testing, so this option is typically available only for

larger teams. But asking your leadership about this never hurt anyone, right?

When you do have the opportunity for user testing with people who have disabilities, remember

that they’re the experts about their own experience. Listen to their feedback without being defen-

sive, and be prepared to learn things about your product that automated testing could never reveal.

Creating a testing routine
Don’t treat accessibility testing as a one-time checklist. Instead, build it into your regular workflow:

1.	 Design phase: Use contrast checkers and color blindness simulators during design

2.	 Pre-handoff: Run through your component guidelines checklist

3.	 Post-development: Perform keyboard and screen reader testing on new features

4.	 Regular audits: Schedule periodic accessibility reviews of your entire product

By incorporating testing into multiple stages of your process, you catch issues early, when they’re

easier and less expensive to fix, while also building accessibility awareness across your entire team.

https://github.com/dequelabs/axe-core
https://www.deque.com/

Building Accessible Design Systems184

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before you

start.

packtpub.com/unlock
packtpub.com/unlock

8
Precision Handoff Techniques

The handoff phase is often the most challenging aspect of collaboration between design and de-

velopment teams. I’ve discussed this throughout multiple chapters because I truly believe it from

experience. You can design the best product on the planet, but if it won’t be developed properly,

it will stay only in Figma for your next Dribbble post.

Throughout this book, we’ve touched on various aspects of the handoff process that are essential

for successful collaboration between designers and developers:

•	 In Chapter 1, we discussed how screen annotations and proper documentation are cru-

cial for every Figma handoff, and we explored the communication gaps that often exist

between design and development teams

•	 Chapter 2 showed us how plugins can streamline the handoff process, particularly tools

such as Variables to CSS that help bridge the gap between Figma designs and production

code

•	 In Chapter 4, we dove deep into structuring design files for developer accessibility and

explored proper file handoff techniques, including accessibility documentation using

specialized plugins

•	 Chapter 6 demonstrated how design tokens serve as a bridge between design and code,

making handoffs more systematic and reliable

•	 In Chapter 7, we covered how to document accessibility features properly during the

handoff process

Precision Handoff Techniques186

This chapter won’t repeat these points, but I’ll add new techniques that should help you prepare

better designs for your developers to build upon.

When I started my career, handoffs were painful. We’d export static images, write lengthy emails

explaining interactions, and hope developers would interpret everything correctly. My favorite

memory was sharing PSD files that were several gigabytes and named something like project-

final-version-2016-final-V2.psd. The result? Endless back-and-forth conversations, frustrated

developers, and final products that looked “similar enough” for us to finally say “OK.”

Thankfully, those days are behind us. Modern tools such as Figma have revolutionized the hand-

off process, but you still need to know how to use them effectively. In this chapter, we’ll explore

advanced techniques that will help you achieve flawless design handoffs and reduce development

errors.

The following are the sections we will cover:

•	 Setting precise export options for accurate delivery

•	 SVG icon optimization for clean export

•	 Preparing Figma variables for specific platforms

•	 Ensuring high-fidelity implementation

•	 Interactive prototype handoffs

•	 Animation handoffs

•	 Quality assurance process

Setting precise export options for accurate delivery
Figma can be used by developers, and it should be used by developers. In many teams, develop-

ers navigating through Figma files is a daily routine, but are they just “looking” or actively using

Figma’s features? One of the most important features is asset export, which can make or break

the development process.

What’s the problem?
Long gone are the days when you shared a drive folder filled with assets. Everyone can export assets

from Figma now, but you, as a designer, need to prepare them correctly to make the process easier

and ensure that developers use them the right way. Here are some common mistakes with assets:

•	 Large export files that slow down applications

•	 Wrong naming conventions that confuse developers

Chapter 8 187

•	 Complex layers without clear indicators of what frame or group to export

•	 Poorly prepared export settings for multiple devices and platforms

These issues lead to frustrated developers, slow-loading applications, and ultimately, poor user

experiences. When developers can’t easily find or use the assets they need, they either skip opti-

mizations or create their own versions, leading to inconsistencies.

How to fix it
Let’s address each of these problems with practical solutions you can implement immediately.

Large export files
Large image files slow down applications and frustrate users. Before exporting, consider whether

each asset really needs maximum quality. For background images or decorative elements, you

can often reduce quality significantly without visible impact.

Figma recently added new export settings, and if you’re exporting images as JPG, check the quality

settings under the additional options (three dots icon).

Figure 8.1 – Figma default JPG settings (Quality is set on High)

Precision Handoff Techniques188

Background images don’t need high quality, and you’ll be fine with Quality set to Low. I tested

this with an image at 1920x1080 resolution: at High quality it was 1.54 MB, while at Low quality

it was 0.64 MB—that’s a 58.4% saving in file size. On first glance, you can’t tell the difference.

Modern file formats
Figma exports the “typical” file types, such as PNG, JPG, and SVG, but modern websites can use

WebP or AVIF formats for even better compression. For WebP or AVIF conversion, you can use

online converters or Figma plugins. Unfortunately, most useful plugins aren’t free, but you can

try InnoExport, which offers 20 free exports to test it out.

Choose the right format for your content:

•	 SVG: Best for simple graphics, icons, and illustrations that need to scale perfectly

•	 PNG: Ideal for graphics with transparency or sharp edges (logos and UI elements)

•	 JPG: Perfect for photographs and complex images with many colors

•	 WebP: Modern replacement for PNG/JPG with better compression; works for both graph-

ics and photos

•	 AVIF: Newest format with the best compression; excellent for photos and complex graphics

In my tests, the same image converted to WebP was 0.20 MB (87% data savings), and AVIF was

0.094 MB (93.9% data savings)—incredible compression with no visible quality loss. If you don’t

want to use paid plugins, try online converters such as Google’s Squoosh (https://squoosh.app/).

Wrong naming conventions
Yes, naming layers is back again! If you want developers to easily export assets from Figma, they

need to know what to export. Unified naming is the key to success. For consistency with your

broader design system, consider following the same naming patterns you use for design tokens

(covered in Chapter 6) when naming your assets. Let me share two specific cases where proper

naming makes a huge difference.

If you prefer alternative tools for image optimization, consider using ImageOptim

(Mac) or TinyPNG (web-based) to compress your exported images without quality

loss.

https://squoosh.app/

Chapter 8 189

Exporting icons
If you want developers to export icons efficiently, place them all on one dedicated page with

a clear prefix (for example, icon- or ico-). This allows them to re-export the entire icon set at

once, even if you change just one icon. They’ll know they have everything up to date without you

having to explain which specific icons changed.

Here are some examples:

•	 icon-arrow-left

•	 icon-arrow-right

•	 icon-close

•	 icon-menu

Exporting images
You should always use clear names in layers for images that need to be exported. More importantly,

always use a wrapper frame and set up export settings on that frame. This way, developers can

easily identify and export the correct assets without guessing.

Complex layers without clear export guidelines
This issue connects directly to the wrong naming conventions. Sometimes, you create very com-

plex images built with multiple elements, such as a testimonial section with multiple user photos

arranged in a layout.

Figure 8.2 – Showcase from Untitled UI with complex image structure

Precision Handoff Techniques190

Every element can be exported individually, or you can export everything at once. You should

always give this decision to developers, because you don’t know exactly how they’ll implement

the design. The best approach is to follow these steps:

1.	 Create one main frame containing all the assets.

2.	 Create logical content blocks within that frame for modular export options.

3.	 Use clear naming for both the main frame and individual components.

Figure 8.3 – Figma proper layers naming

This gives developers flexibility to export the entire composition or just the pieces they need for

their specific implementation approach.

Poorly prepared export settings for multiple devices
Before exporting anything, clarify with your development team what formats and resolutions they

need. Web projects typically need 1x and 2x versions, while mobile apps might require 1x, 2x, and

3x variants. Some teams prefer SVG files for icons, while others need PNG exports at specific sizes.

You can prepare export settings for each asset so developers will see every option in Dev mode.

This creates a one-click export solution—they don’t need to set up everything themselves, which

reduces errors and saves time.

Chapter 8 191

Figure 8.4 – Figma export settings for icons

Here are some common export configurations:

•	 Web icons: SVG format (scalable) or PNG at 24px, 32px, or 48px

•	 Web images: JPG/PNG at 1x and 2x for retina displays

•	 Mobile icons: PNG at 1x, 2x, and 3x resolutions

•	 Mobile images: Multiple resolutions based on device requirements

Test your exports
Please test your exports! As I showed you with file size optimization, you can make huge im-

provements to user experience with simple testing. Try different export settings and find the best

balance between file size and quality for your specific assets.

Don’t assume your first export settings are optimal. Spend time experimenting with different

formats, quality levels, and compression settings. Your users will benefit from faster loading times,

and your developers will appreciate assets that are properly optimized from the start.

SVG icon optimization for clean export
SVG icons are among the most frequently exported assets in any design project, yet they’re often

the source of significant developer frustration. Many designers don’t realize how their design

choices directly affect the exported SVG code quality, leading to bloated files, browser compati-

bility issues, and unnecessary cleanup work for developers. Understanding how to design icons

properly can dramatically improve your handoff process and reduce implementation time.

Precision Handoff Techniques192

What’s the problem?
When designers create icons without considering the final SVG output, they often use design

techniques that create unnecessarily complex code. A simple-looking icon might export as hun-

dreds of lines of SVG code filled with masks, filters, and complex path data that browsers struggle

to render consistently.

Another common issue is using design approaches that work perfectly in Figma but translate

poorly to the SVG format. Features such as multiple strokes, complex gradients, or layered effects

might look great in your design tool but create compatibility nightmares across different browsers,

especially older versions of Edge.

Additionally, many designers treat icon creation as purely visual work, not considering that icons

need to be scalable, performant, and maintainable in code. This disconnect often leads to icons

that look perfect at design time but cause technical problems during implementation.

How to fix it
Creating clean, developer-friendly SVG icons requires understanding both design principles and

technical constraints. The goal is to design icons that export as clean, simple SVG code that per-

forms well across all browsers and devices.

Design with simple paths and shapes
Build your icons using basic geometric shapes and simple paths rather than complex effects or

detailed illustrations. This fundamental approach ensures your icons export as clean, efficient

SVG code.

Here are some best practices:

•	 Use rectangles, circles, and polygons as building blocks

•	 Create complex shapes by combining simple ones

•	 Avoid intricate details that don’t scale well

•	 Keep designs geometric and systematic

Here are the things to avoid:

•	 Complex illustrations with many small details

•	 Hand-drawn or sketch-like elements

•	 Overly decorative elements that don’t serve the icon’s purpose

Chapter 8 193

Flatten and combine paths instead of grouping
One of the most important technical considerations is how you structure your icon’s elements.

Instead of simply grouping multiple shapes, use Figma’s path operations to create unified, clean

shapes:

•	 Recommended path operations:

•	 Union: Combine overlapping shapes into single paths

•	 Subtract: Cut shapes out of each other cleanly

•	 Intersect: Create shapes from overlapping areas

•	 Exclude: Remove overlapping areas while keeping the rest

•	 Why this matters:

•	 Creates single, clean paths instead of multiple layered elements

•	 Dramatically reduces the complexity of exported SVG code

•	 Improves rendering performance across all browsers

•	 Makes icons easier for developers to modify programmatically

Avoid masks, gradients, and complex effects
These features create significantly more complex SVG code and can cause compatibility issues

across different browsers and devices.

Here are some effects to avoid:

•	 Drop shadows and inner shadows

•	 Blur effects and other filters

•	 Complex gradients (especially radial gradients)

•	 Masks and clipping paths

•	 Multiple overlapping strokes

Here are some alternative approaches:

•	 Use solid colors instead of gradients

•	 Create depth through clever use of geometry rather than shadows

•	 If you must use gradients, discuss implementation complexity with developers first

•	 Design variations for different states, rather than relying on effects

Precision Handoff Techniques194

Test your SVG export quality
Before finalizing any icon, export it as SVG and examine the code quality. This quick check can

reveal potential issues and help you refine your design approach.

Here’s how to do a quick quality test:

1.	 Export your icon as SVG from Figma.

2.	 Open the SVG file in a text editor.

3.	 Check the file size and code complexity.

Here are some red flags to look for:

•	 Files larger than a few KB for simple icons

•	 Hundreds of lines of code for seemingly simple designs

•	 Presence of <mask>, <filter>, or <clipPath> elements

•	 Extremely long or complex <path> data

•	 Multiple <defs> sections with gradients or patterns

Here are the good SVG characteristics:

•	 Clean, readable code structure

•	 Minimal <path> elements with simple coordinates

•	 No complex effects or filters

•	 File sizes typically under 2 KB for most icons

Preparing Figma variables for specific platforms
Figma variables are powerful tools for maintaining design consistency, but they become even more

valuable when properly prepared for different development platforms. Each platform—web, iOS,

Android, or desktop applications, TVs, and watches—has its own conventions, limitations, and

requirements that should be reflected in how you structure and name your variables.

What’s the problem?
Many designers create variables that work perfectly in Figma but don’t translate well to devel-

opment environments. Generic variable names such as Color 1 or Spacing Large might make

sense in a design context, but they create confusion when developers try to implement them

across different platforms.

Chapter 8 195

Different platforms also have varying technical constraints. What works as a web CSS variable

might not be suitable for iOS development, and Android has its own naming conventions that

differ from both. Without considering these platform-specific needs, your variables can become

a source of confusion rather than clarity.

Additionally, many teams don’t think about how variables will be consumed by developers until

the handoff phase, missing opportunities to create a more streamlined development process.

How to fix it
The key is to structure your variables with the end platform in mind, creating a system that works

seamlessly from design to production code.

Understand platform conventions
Before creating variables, research the naming conventions and organizational patterns used by

your target platforms:

•	 Web development:

•	 CSS custom properties use kebab-case: --color-primary-500

•	 iOS development:

•	 Uses camelCase: colorPrimary500

•	 Android development:

•	 Uses snake_case: color_primary_500

Set up the variables for each platform
Figma Variables has an amazing code syntax feature that not many people are using. You don’t

need to set up platform-specific variables, because that would create multiple variables without

any reason and build a super complex system for almost nothing. What you do instead is prepare

platform-specific naming via Code syntax for each variable.

This means you’ll have only one variable, but it will be named differently for web, iOS, or Android,

so each developer will see the specific naming convention they expect. Here’s how you can set

this up—it’s super easy:

1.	 Open the Variables tab in your Figma file.

2.	 Select a specific variable you want to configure.

3.	 Click on the Edit Variable icon (pencil icon).

Precision Handoff Techniques196

4.	 Hit the + button next to Code syntax.

5.	 Select your platform (for example, Web).

6.	 Enter the desired syntax into the input field.

Figure 8.5 – Figma variables Code syntax modal

For example, if your variable is called Primary Blue in Figma, you can set it to appear as the

following:

•	 --color-primary-500 for web developers

•	 colorPrimary500 for iOS developers

•	 color_primary_500 for Android developers

Chapter 8 197

Once you’ve set this up, you can easily check how it will appear to developers by switching to Dev

mode. The same variable will show the appropriate naming convention based on the platform

context, as shown in the following figures:

Figure 8.6 – Variable naming format in Dev mode for CSS

Figure 8.7 – Variable naming format in Dev mode for iOS (SwiftUI)

Precision Handoff Techniques198

Figure 8.8 – Variable naming format in Dev mode for Android

Ensuring high-fidelity implementation
Good design isn’t about pixel-perfect implementation—it’s about solving the right problems. But

at the same time, when the product is developed differently than you designed, you don’t know

whether it will solve the problem you originally designed for. Sometimes, the reason something

is developed differently lies in the handoff process itself. I’ve found that the best implementa-

tions come from treating the handoff as the beginning of a collaborative process, not the end of

the design phase.

If you have many variables already prepared, don’t do this manually. Check out

this short and funny Figma tutorial video on how to do it via JavaScript in seconds:

https://www.youtube.com/watch?v=t2bMxHk7D5k.

https://www.youtube.com/watch?v=t2bMxHk7D5k

Chapter 8 199

What’s the problem?
Even with perfect documentation and assets, implementations can drift from the original design

due to technical constraints, time pressure, or simple misunderstandings. Small deviations com-

pound over time, eventually creating products that feel inconsistent and unpolished compared

to the original vision.

Many teams lack a systematic approach to verifying implementation accuracy. Designers might

not see the implemented version until it’s nearly complete, making significant corrections ex-

pensive and time-consuming. Or you’ll hear the dreaded “Create a ticket and we’ll come back when

we have time”—which, let’s be honest, is never.

How to fix it
High-fidelity implementation requires proactive involvement throughout the development cycle.

Here’s how to maintain design quality from handoff through launch:

1.	 Open communication channels with developers.

2.	 Establish review checkpoints.

3.	 Use shared testing environments.

4.	 Build quality assurance into the process.

5.	 Document approved deviations.

6.	 Create implementation guidelines.

Open communication channels with developers
Make sure developers know they can and should reach out to you when they have questions or

doubts about implementation details. Creating an environment where developers feel comfort-

able asking for clarification upfront prevents costly fixes later and ensures better implementation

quality.

Here’s how to encourage open communication:

•	 Make yourself available for quick questions during development sprints

•	 Set clear expectations about response times for different types of questions

•	 Use collaborative tools (Slack, Teams, etc.) for quick clarifications

•	 Schedule regular check-ins during complex feature development

•	 Celebrate when developers ask questions rather than making assumptions

Precision Handoff Techniques200

.

Establish review checkpoints
Set up clear review checkpoints with your development team and product manager. Account for

this time in your project timeline and treat it as part of the project (same as QA for development),

not a nice-to-have phase if you have time.

Remember, you as a designer should be the final review stage for the design and behavior of

components or larger blocks (search functionality, for example). If you find inconsistencies, ask

developers why they implemented it differently. I was mentoring one team where designers were

doing these reviews by generating dozens of Jira tickets with changes, but they didn’t understand

why developers implemented things differently. Is it a misunderstanding or a technical limitation?

That’s a huge difference in how you approach the “problem.”

Use shared testing environments
Get access to staging environments where you can interact with implemented designs regularly.

This hands-on experience helps you catch usability issues that aren’t apparent in static designs

and ensures that interactions feel smooth and natural.

Test implementations on multiple devices and browsers to verify consistency across platforms.

What looks perfect on your development machine might have issues on older devices or different

operating systems. I’ve mentioned this before, but check the product on multiple platforms—not

only on your expensive MacBook Pro.

 Remember

It’s always better to spend 5 minutes clarifying something than 5 hours fixing it

after implementation

Tip from beta reader

Consider using Figma’s branching feature to create separate testing branches instead

of testing everything in one shared file. This is particularly valuable for design system

changes, as it helps separate your design updates from other teams’ changes that

could potentially interfere. Ad-hoc branches give you better control and help trouble-

shoot potential design issues more effectively by isolating different types of changes.

Chapter 8 201

Build quality assurance into the process
Make design review an official part of the development workflow. Just as code gets reviewed before

merging, implemented designs should be verified for accuracy before being marked complete.

Create simple checklists that developers can use to self-assess their work before requesting design

review. This approach catches obvious issues early and makes the review process more efficient

for everyone.

Here is an example checklist:

•	 Does the spacing match the design specifications?

•	 Are the correct fonts and font weights applied?

•	 Do interactive states (hover, focus, and active) work as intended?

•	 Is the component responsive across different screen sizes?

•	 Does the color contrast meet accessibility requirements?

Document approved deviations
When technical constraints require changes from the original design, document these decisions

clearly. This documentation prevents the same discussions from happening repeatedly and helps

maintain consistency when similar situations arise in the future.

Remember, not all designers are working on the same features, and if you encounter a challenge,

it’s very likely another team member will face it too. Share these findings with your design team

and document them where your team can access them. For example, if it’s a limitation in a certain

component, include this information in Figma or even in the component’s description.

Create implementation guidelines
Beyond individual component reviews, establish broader guidelines for how designs should be

interpreted. This includes guidance on the following:

•	 Spacing consistency: How should developers handle spacing when content length varies?

•	 Responsive behavior: How should components adapt across different screen sizes?

•	 Animation and transitions: What timing and easing should be used for interactions?

•	 Error states: How should components behave when something goes wrong?

These guidelines reduce guesswork and help developers make design-aligned decisions when

you haven’t explicitly designed for edge cases.

Precision Handoff Techniques202

Interactive prototype handoffs
Interactive prototypes can be incredibly powerful for communicating complex user flows and

interactions that static designs simply can’t convey. However, not all prototypes are created equal

when it comes to handoffs. The key is creating prototypes that enhance understanding rather

than confuse developers about what needs to be built.

What’s the problem?
Many designers create prototypes that are either too basic to be useful or so complex that devel-

opers can’t extract actionable information from them. I’ve seen prototypes that take longer to

create than the actual development would take, and others so simplified that they miss crucial

interaction details.

Another common issue is the disconnect between what’s possible in a Figma prototype and what’s

feasible in production code. Figma allows for interactions that might be technically challenging

or impossible to implement, leading to frustration when developers can’t replicate the exact

prototype behavior.

Additionally, many teams use prototypes for stakeholder presentations but forget to optimize

them for developer handoffs. A prototype that impresses clients might not contain the technical

details developers need to build the actual product.

How to fix it
The goal is to create prototypes that serve as clear communication tools between design and de-

velopment, not just impressive demos. There’s a simple decision workflow that I use and teach my

team to follow. Based on this approach, we can invest the minimum time needed in prototypes.

Isn’t a video enough?
Sometimes, you need something more interactive than static design, but do you really need to

prototype it? Isn’t a short Loom video with verbal explanation and some showcases from other

parts of your product enough? Maybe something is already developed in production, but you

don’t have the interaction built in Figma yet.

In many cases, a video is sufficient, and it’s the least time-consuming decision you can make. You

can save hours by replacing complex interactive prototypes with just a short recording.

Chapter 8 203

Use someone else’s interaction/check technical feasibility
Ask your development team how they’re planning to build this flow. If they’ll use a third-party

library, maybe there’s a Figma file for it that you can use and adapt the interaction from. No need

to reinvent the wheel.

For example, this was a common case when our development team planned to use a specific

component (in our case, it was a date picker). We found a free Figma file from the community,

redesigned it with our design tokens in mind, and it was done. Easy and fast.

Focus on user flows
For handoff purposes, prioritize demonstrating user flows over visual polish. Developers need to

understand how users move through the interface, what triggers state changes, and how different

screens connect to each other.

Your prototype should clearly show the following:

•	 Entry points: How do users access this flow?

•	 Decision points: What choices do users make along the way?

•	 Success states: What happens when everything goes right?

•	 Error handling: How does the system respond to problems?

•	 Exit points: How do users leave this flow?

Create multiple prototype versions
If you have the time and resources, consider creating different prototype versions for different

audiences:

•	 Stakeholder version: Polished, impressive, and shows the big picture

•	 Developer version: Detailed, technical, and shows edge cases and states

•	 User testing version: Functional, realistic, and allows for genuine feedback

This approach ensures that each audience gets the information they need without overwhelming

anyone with irrelevant details.

Besides this decision workflow, there are two additional points that are important to consider

when creating prototypes for developer handoffs.

Precision Handoff Techniques204

Talk with your developers
Yes, here it is again. Talk with them before you design something, and talk with them regularly,

because many teams have different workflows and needs.

Before building your prototype, talk with your development team about what information would

be most helpful. Some developers prefer detailed micro-interactions, while others need high-level

flow understanding. Knowing their preferences helps you focus your prototype efforts where

they’ll have the most impact.

Ask specific questions such as the following:

•	 Do you prefer to see detailed transitions or just understand the flow?

•	 What interaction patterns are you familiar with implementing?

•	 Are there any technical limitations I should consider?

•	 How do you typically handle complex state changes?

Use realistic content and data
Prototype with real or realistic content whenever possible. You can check Chapter 2 about plugins

(specifically data.to.design and Content Reel) that help you load realistic content and data. Lorem

ipsum and placeholder data can hide important layout and interaction issues. If your prototype

shows a user dashboard, use actual user names, realistic data volumes, and varied content lengths.

This approach helps developers understand edge cases such as the following:

•	 How does the interface handle very long user names?

•	 What happens when lists are empty or have hundreds of items?

•	 How should the design adapt to different data types?

For international projects, consider the localization aspect when prototyping

with realistic content. Different languages can dramatically affect layout

and spacing. Use plugins such as CopyDoc, Localiser, or Transifex Figma

Plugin to test your designs with actual translated content. This helps identify

potential issues with text expansion (German text can be 30% longer than

English) or text contraction (Chinese text might be much shorter) before

development begins.

Chapter 8 205

For more detailed guidance on accessibility testing and considerations, refer to Chapter 7, which

covers comprehensive approaches to ensuring your designs work for all users.

Animation handoffs
Animation handoffs can be one of the trickiest aspects of the design-to-development process.

While static designs and even interactive prototypes are relatively straightforward to communi-

cate, animations involve timing, easing, sequencing, and technical performance considerations

that can easily get lost in translation. The goal is to provide developers with clear, actionable

specifications that result in smooth, polished animations that enhance the user experience rather

than detract from it.

What’s the problem?
Many designers create beautiful animations in Figma or Adobe After Effects that look perfect

in the design environment but are difficult or impossible to implement in production code. The

disconnect often happens because Figma’s animation capabilities don’t always align with what’s

technically feasible or performant in real applications.

Another common issue is incomplete animation specifications. Designers might show the end

states of an animation but forget to document crucial details such as timing, easing curves, or

what triggers the animation. This leaves developers guessing about implementation details, often

resulting in animations that feel different from the original design intent.

Performance is also a major concern that’s often overlooked during the design phase. An anima-

tion that runs smoothly in Figma might cause performance issues on lower-end devices or older

browsers, but these constraints aren’t always considered during the handoff process.

How to fix it
Successful animation handoffs require clear communication about both the visual aspects and

the technical specifications that make animations feel polished and perform well.

Try to prepare the final form of the animation
You, as a designer, have many tools at your disposal to deliver not just an animation “showcase”

but the final “product” that can be used by developers. First, ask them whether they’re planning

to use some of the amazing libraries that are available online, such as GSAP (https://gsap.com/)

or AnimeJS (https://animejs.com/). If you know they want to use something like this, it’s your

guideline to prepare something that will be easy to implement, because you’ll be working within

the guardrails of the library.

https://gsap.com/
https://animejs.com/

Precision Handoff Techniques206

A second option is to use my favorite LottieFiles (https://lottiefiles.com/) with their amazing

Figma plugin. In a few clicks, you can have production-ready animations without any guessing

and complex information transfer to developers—just deliver them the final output of the ani-

mation, and you’re good to go.

If this isn’t an option, try to think about the following points.

Animation patterns and styles
Even in animations, you should follow strict guidelines. You can have animations as part of your

design tokens in Tokens Studio or simply as part of your design system. My point is, if you need

to invest time into custom animation, try to limit their variety and create repeatable “compo-

nents” from them.

It sounds obvious, but Figma doesn’t have an easy way to make animation settings (duration and

motion curve) into components to repeat again and again. This could cause complex implemen-

tation, because every animation will be slightly different, even when it doesn’t make any sense.

Try to build your own animation library to use repeatedly.

Document animation specifications
For every animation you design, provide developers with comprehensive specifications that

include the following:

•	 Distinguishing essential animations from aesthetic animations

•	 Timing and duration

Rive (https://rive.app/) is another excellent alternative to LottieFiles, offering

more advanced animation capabilities and real-time interactive features that can

be particularly useful for complex prototypes.

Performance warning (from engineer beta reader)

While these animation libraries are powerful, consider the trade-offs. Adding 100+

KB of library weight just for simple transitions can hurt performance. For basic

animations, CSS animations or utility-based systems such as Tailwind’s animation

classes often provide better performance with minimal complexity. Reserve heavy

animation libraries for truly complex animations that justify the overhead. Some-

times, less is more.

https://lottiefiles.com/
https://rive.app/

Chapter 8 207

•	 Easing and motion curves

•	 Trigger conditions

•	 Performance considerations

Distinguish essential animations from aesthetic animations
In my mind, there are two types of animations: essential animations that communicate key in-

teraction concepts, such as system status, and aesthetic animations that are there to entertain or

please users with nice transitions and visual flourishes. (I originally called these UX animations,

but my beta reader pointed out this could be confusing terminology.)

Essential animations are more important, and the implementation should be as close as possible

to the design. For nice-to-have animations, developers can implement them more easily and

make them slightly different if technical capabilities make your original design harder to achieve.

Here are some examples:

•	 Essential animation: In a long form with an error, the browser scrolls to the first input

with an error that changes color to red and does a little bouncy size change to grab your

attention

•	 Nice-to-have: A delightful animation of a flying unicorn when you mark your task as

done in Asana

Timing and duration
Be specific about timing requirements to ensure animations feel consistent and intentional:

•	 How long should the animation take from start to finish?

•	 Are there different phases with different timing?

•	 Should the animation speed adapt based on content or device capabilities? For example,

should loading animations always finish, even if the actual loading is faster?

Easing and motion curves
Define the motion characteristics that create the right emotional response and feel:

•	 What type of easing should be used (linear, ease-in, ease-out, or ease-in-out)?

•	 Are there custom cubic Bezier curves that create the desired feel?

Precision Handoff Techniques208

Concept CSS/Web iOS Android Material Design

Linear linear .linear LinearInterpolator N/A (rarely used)

Ease-in ease-in .easeIn AccelerateInterpolator Acceleration

cubic-bezier(0.4,
0.0, 1, 1)

Ease-out ease-out .easeOut DecelerateInterpolator Deceleration

cubic-bezier(0.0,
0.0, 0.2, 1)

Ease-in-out ease-in-out .easeInOut AccelerateDecelerateI
nterpolator

Standard

cubic-bezier(0.4,
0.0, 0.2, 1)

(Emphasis) - - - Sharp

cubic-bezier(0.4,
0.0, 0.6, 1)

Table 8.1 - Specific platform terminology

Trigger conditions
Clearly specify when and how animations should be activated to prevent implementation con-

fusion:

•	 What user action or system event starts the animation?

•	 Are there conditions where the animation should be skipped or modified?

•	 How should the animation behave if triggered multiple times quickly (for example, rapidly

clicking a button)?

•	 Should the animation work bidirectionally? (For example, when scrolling down, elements

animate in, but when scrolling back up, they should reverse and animate out.)

Be aware that easing terminology varies across platforms. While the concepts

are universal, the naming differs:

Chapter 8 209

Performance considerations
Address technical constraints early to ensure animations work smoothly across all devices and

platforms:

•	 Which properties are being animated (position, opacity, transform, etc.)?

•	 Are there performance-friendly alternatives to achieve the same visual effect?

•	 Should the animation be disabled on lower-end devices?

Showcase the animation
When you want to show the animation, you have two main options:

•	 Build it: In Figma using Smart Animate or in tools such as Adobe After Effects

•	 Loom it: (Yes, that’s certainly a word!) Try to show the animation using examples from

other sources. For example, you can find interesting animations on CodePen (https://

codepen.io/), where, alongside your Loom video, developers have the code ready. For

additional inspiration, check out Landing Love (https://www.landing.love/) for curated

web animations, and Dribbble’s micro-interaction collection (https://dribbble.com/

tags/micro-interaction). If you want small changes, you can try modifying the code

yourself, or explain the changes in the video.

Talk about technical implementation approaches
Work with your development team to understand which animation techniques work best for

your specific platform and performance requirements. For example, for web development, you

can use the following:

•	 CSS transitions

•	 CSS animations

•	 JavaScript animations

When animating movement, always prefer CSS transform properties over

position properties (left, top, right, and bottom). Transform animations

use hardware acceleration and don’t trigger layout recalculations, resulting

in smooth 60 fps animations. Position-based animations force the browser

to recalculate the layout, which can cause stuttering and poor performance,

especially on mobile devices. The visual result may look identical, but the

performance difference is dramatic.

https://codepen.io/
https://codepen.io/
https://www.landing.love/
https://dribbble.com/tags/micro-interaction
https://dribbble.com/tags/micro-interaction

Precision Handoff Techniques210

Create fallback options
Always design with graceful degradation in mind. What happens if the animation can’t be imple-

mented as designed due to technical constraints or performance requirements? Having fallback

options ready prevents your carefully designed user experience from being completely abandoned

when implementation challenges arise.

Fallback options might include the following:

•	 Simpler animations that achieve the same functional goal

•	 Static state changes that maintain usability

•	 Alternative feedback mechanisms that don’t rely on motion

Quality assurance process
Quality assurance in design handoffs isn’t just about catching bugs—it’s about ensuring that the

implemented design maintains the intended user experience, visual consistency, and functional

behavior across different devices and platforms. A good QA process for design implementation

bridges the gap between what was designed and what was built, catching discrepancies before

they reach users.

What’s the problem?
Many teams treat design QA as an afterthought, only checking whether the implementation “looks

close enough” to the original design. This approach misses subtle but important details that affect

user experience: inconsistent spacing, wrong fonts, poor color contrast, or incorrect design tokens.

Another common issue is the lack of structured design review processes. Designers might check

implementations randomly or only when developers specifically ask for feedback, leading to

inconsistent quality standards across different features or projects.

Additionally, many QA processes focus primarily on functional testing (does the button work?)

while overlooking design fidelity (does the button look and feel right?). This can result in products

that function correctly but feel unpolished or inconsistent with the brand and design system.

How to fix it
Implementing a systematic approach to design QA ensures that the quality of implementation

matches the quality of your design work.

Chapter 8 211

Establish design review checkpoints
Create specific moments in your development workflow where design review is mandatory, not

optional. These checkpoints should be built into your project timeline and treated as essential

as code reviews or functional testing.

Here are some recommended checkpoints:

•	 Component completion: Before any new component is marked as “done”

•	 Feature milestone: When a complete user flow is implemented

•	 Pre-staging: Before the code moves to the staging environment

•	 Pre-production: Final design sign-off before release

Create design QA checklists
Develop comprehensive checklists that cover both visual and functional aspects of design im-

plementation. These checklists help ensure consistency across different reviewers and prevent

important details from being overlooked.

Here are some example points that I would look for. Remember that you need to adjust them for

your specific project. If you’re building a mobile app, the checklist will be different from if you’re

building a web app.

For more comprehensive QA guidance, especially for design system components,

check out the Design System Checklist (https://www.designsystemchecklist.

com/) and Nathan Curtis’s article on Component Visual Test Cases (https://medium.

com/eightshapes-llc/component-visual-test-cases-e501e2d21def). These

resources provide in-depth checklists that are particularly helpful for QA teams

working with design system components.

 Note from engineer beta reader

Many of these checklist items should ideally be automated through testing frame-

works such as Playwright rather than checked manually by humans. Automation en-

sures consistency, saves time, and catches issues more reliably than manual reviews.

https://www.designsystemchecklist.com/
https://www.designsystemchecklist.com/
https://medium.com/eightshapes-llc/component-visual-test-cases-e501e2d21def
https://medium.com/eightshapes-llc/component-visual-test-cases-e501e2d21def

Precision Handoff Techniques212

Here is a visual fidelity checklist:

•	 Are fonts, sizes, and weights correct?

•	 Is spacing consistent with design specifications?

•	 Do colors match the design system exactly?

•	 Are images properly sized and optimized?

•	 Do icons and graphics display correctly?

And here is an interaction design checklist:

•	 Do interactive states work as intended (hover, focus, active, disabled, etc.)?

•	 Are loading states implemented correctly?

•	 Do animations match timing and easing specifications?

•	 Are error states properly designed and functional?

•	 Does keyboard navigation work smoothly?

Here is a responsive design checklist:

•	 Does the layout work across different screen sizes?

•	 Are touch targets appropriately sized for mobile?

•	 Do components adapt gracefully to content changes?

•	 Are breakpoints implemented as designed?

Involve designers in sprint reviews and retrospectives
Make design review a standard part of your sprint review or demo process. This ensures that

design quality is evaluated alongside functional requirements and prevents design issues from

accumulating over time.

During sprint reviews, designers should specifically check the following:

•	 How well the implementation matches the intended user experience

•	 Whether any technical constraints led to design compromises

•	 Whether the implementation reveals any gaps in the original design specifications

•	 How the new implementation affects overall product consistency

Chapter 8 213

Test across real devices and conditions
Don’t rely solely on desktop browsers or device simulators for design QA. Test on actual devices,

in different lighting conditions, and with various user settings to ensure your design works in

real-world scenarios.

Back in the days when I was designing a lot, I always kept 2–3 phones next to my computer (low-

end and high-end Android, plus an iPhone SE—the tiny one) to check the designs and pre-pro-

duction apps before they received the green light from me.

Here are some real-world testing considerations:

•	 Different screen sizes and resolutions

•	 Various browser versions and operating systems

•	 Different user accessibility settings

•	 Slow network connections

•	 Different input methods (mouse, touch, or keyboard)

For more detailed guidance on accessibility testing and considerations, refer to Chapter 7, which

covers comprehensive approaches to ensuring your designs work for all users.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before

you start.

packtpub.com/unlock
packtpub.com/unlock

9
Elevating Stakeholder
Engagement

Working with stakeholders can be one of the most rewarding parts of the design process, but it

can also be incredibly frustrating. I know this because I’ve been on both sides of the discussion

many times, both as a designer and as a C-level manager. The funny thing is that in both cases, I

was telling myself, “Why don’t they get it? It’s so simple!” But the reality is, it’s not simple at all.

Stakeholder management is challenging because you’re dealing with people. These are people

who, in many cases, have years of experience in their field behind them. This can be incredibly

beneficial, but they’re also carrying patterns and prejudices from their past experiences. Under-

standing this human element is crucial to successful stakeholder engagement.

Over the years, I’ve seen teams struggle with unclear feedback, endless revision cycles, and stake-

holders who seem to change their minds constantly. However, I’ve also witnessed the magic that

happens when stakeholder engagement is done right. When stakeholders feel heard, understood,

and truly involved in the design process, they become your biggest advocates rather than obstacles.

The key insight I want to share is this: stakeholder engagement isn’t about managing people or

controlling their input. It’s about creating systems and processes that channel their expertise,

concerns, and vision into actionable design decisions. The best stakeholder relationships I’ve built

weren’t based on perfect presentations or flawless prototypes. They were built on transparency,

clear communication, and making stakeholders feel like true partners in the design process. The

key is ensuring stakeholders feel genuinely involved in creating solutions, not just evaluating them.

Elevating Stakeholder Engagement216

In this chapter, we’ll explore five essential areas that will transform how you work with stake-

holders:

•	 Running collaborative reviews with stakeholders

•	 Using interactive prototypes to gather live feedback

•	 Implementing agile design changes based on stakeholder input

•	 Presenting design rationale for stakeholder alignment

•	 Managing complex feedback loops for stronger stakeholder relationships

Let’s dive into the first area.

Running collaborative reviews with stakeholders
In many companies that I’ve worked with, the traditional design review process was fundamen-

tally broken. You know the drill: spend hours preparing a presentation, walk through designs,

get bombarded with conflicting feedback, then spend days trying to make sense of scattered

comments across email, Slack, and Figma. If you don’t know this routine, consider yourself lucky

and thank your stakeholders for it, because this scenario is more common than you might think.

What’s the problem?
Most design reviews fail because they lack structure and clear objectives. Stakeholders arrive

unprepared, discussions go in circles, and decisions get postponed. Without proper facilita-

tion, reviews become showcase events where designers present work and stakeholders provide

scattered, often conflicting feedback. This approach wastes everyone’s time and rarely leads to

actionable outcomes.

Another common issue is the “design by committee” trap, where stakeholders try to redesign

everything during the review. This happens when stakeholders don’t understand the design

rationale or haven’t been involved enough in the process leading up to the review.

How to fix it
The solution really depends on your internal workflows, but here are some key strategies I’ve

found effective across different organizations.

Chapter 9 217

Establish a clear project narrative
Before you can have productive design reviews, everyone needs to be on the same starting line.

Every project should have a clear narrative that answers the fundamental questions: Why are we

doing this? What problem are we solving? Who are we solving it for? What does success look like?

This isn’t just about having a project brief sitting in a shared folder somewhere. It’s about actively

ensuring every stakeholder understands and agrees on the project’s core purpose. I’ve seen too

many review sessions derail because stakeholders had different assumptions about the project

goals or user needs.

Create a simple one-page project narrative that includes the following:

•	 The problem: What specific user or business challenge are we addressing?

•	 The opportunity: Why is solving this problem important right now?

•	 Success metrics: How will we know if our solution works?

•	 Constraints: What limitations do we need to work within?

Share this narrative before your first review session and reference it throughout the project. When

feedback discussions go off track, you can always return to this foundation: “Let’s check whether

this suggestion aligns with our core objective of [insert problem statement].”

Review preparation
Stakeholders are busy people, and don’t assume they’re at the same level of understanding about

design processes or project phases as you are. They’re probably not, and you need to guide them.

You can make small changes to your review process to be more effective.

Make a proper calendar event
Many times, even now at Dotidot, I receive calendar events with just a title and zero description.

This sets everyone up for failure. Here’s what should be included:

•	 Context setting: Briefly remind stakeholders of the project goals, target users, and any

constraints you’re working within. Even if they were part of earlier conversations, this

refresher ensures everyone starts from the same foundation. These details are crucial. If

you need any preparation or expect clear outcomes from the meeting, put it in the cal-

endar invite.

•	 Review objectives: Clearly state what you want to achieve in this session. Are you vali-

dating the overall direction, gathering feedback on specific interactions, or making final

decisions before development? Different objectives require different types of feedback.

Elevating Stakeholder Engagement218

•	 Specific questions: Instead of asking “What do you think?” provide targeted questions

such as the following:

•	 Does this solution address the main user pain point we identified?

•	 Are there any business constraints we haven’t considered?

•	 How does this align with our technical capabilities?

•	 Do you agree with the proposed direction?

Use video for complex topics
For more complex topics, or when you’re introducing new concepts, consider recording a short

Loom video instead of just sending text. A 2-3 minute video where you walk through the key points

or show the Figma prototype can be much more effective than a written explanation, especially

when stakeholders need to understand context or see specific interactions.

Figma tutorial
Include some basic guidance with your invite. Not every stakeholder is a Figma pro, so I send a

short pre-recorded video (I have one that I send repeatedly) covering the basics: how to navigate,

that Figma has multiple pages you can switch between (a common mistake is when stakeholders

only check the first page), how to comment, etc..

Send a reminder
One or two days before a crucial meeting, send a reminder with the information from the event

description. Set up this email or Slack message when you’re creating the event and schedule it

to send later, so you don’t need to think about it.

Review session structure
Start every review with a five-minute agenda overview. This might seem obvious, but it sets

expectations and keeps the conversation focused.

Ask everyone whether they completed their preparation from the event description. If not, don’t

be afraid to postpone the meeting with an honest explanation:

“To be productive, we need to have the same starting point. That starting point is the preparation outlined

in the event description. If you didn’t have time to review it, that’s completely understandable. I know

more important things come up. But in this case, it doesn’t make sense for us to proceed. It would be a

waste of time for those who did prepare. What date works best to reschedule?”

Chapter 9 219

I always remember the faces of stakeholders who come to every meeting unprepared when this

is said for the first time by the meeting organizers I’m mentoring. Priceless. You can be sure that

next time they’ll either be prepared or they’ll decline the meeting.

If everyone is ready, the meeting can start. Here’s my agenda template, but remember to adapt

it to your situation:

•	 Design walk-through (15-20 minutes): Present the work systematically, explaining your

thinking as you go. Don’t just show the final designs; walk through your decision-making

process.

•	 Targeted feedback (20-30 minutes): Work through your prepared questions system-

atically. Use techniques such as dot voting for prioritization when you have multiple

options to evaluate.

•	 Action items and next steps (5-10 minutes): Clearly document decisions made, action

items assigned, and the timeline for next steps.

Managing the conversation
For larger stakeholder groups, appoint a dedicated facilitator. In my experience with larger groups

or senior stakeholders, it’s beneficial to have a different facilitator than the presenting design-

er. While it’s often the same person, this isn’t ideal because the facilitator’s role often involves

saying “stop,” and it’s difficult to switch between a neutral role (facilitator) and an opinionated

role (designer).

If you don’t have the option to have two separate people in the meeting (facilitator and designer), try

setting up a safe word. At Dotidot, we use “strawberry.” Anyone can use it, and when they do, the

discussion stops and we return to the original topic. It doesn’t matter if a product manager says it in

the middle of the CEO talking. That’s the rule, and everyone respects it. This approach works better

in smaller, more open companies than in large corporations, in my opinion, but it’s an interesting

strategy worth considering for the right team culture.

The facilitator keeps the conversation on track and ensures everyone has a chance to contribute.

When working with senior stakeholders, this role becomes even more critical because power

dynamics can prevent honest feedback.

Elevating Stakeholder Engagement220

As a designer, use the “yes, and” approach when stakeholders suggest changes. Instead of imme-

diately explaining why something won’t work, acknowledge their concern and build on it. Take

the following example:

“Yes, I understand the concern about the checkout flow being too long, and let me show you how we ad-

dressed that with the progress indicator and by reducing form fields.”

Scripts for unclear feedback
When stakeholders give vague feedback such as “make it pop more” or “it doesn’t feel right,” use

the “help me understand” script to turn subjective opinions into actionable design direction:

“Help me understand what [repeat their words] means for our users trying to [complete specific task].

Are you thinking about [offer 2-3 specific options such as visual hierarchy, color contrast, call-to-action

prominence, etc.]?”

Take the following example:

•	 Stakeholder: “This page needs more energy”

•	 Response: “Help me understand what ‘more energy’ means for users trying to find our

pricing information. Are you thinking about brighter colors, larger typography, or more

prominent call-to-action buttons?”

•	 Stakeholder: “The design feels off”

•	 Response: “Help me understand what feels off for users trying to complete their purchase.

Are you thinking about the layout structure, visual hierarchy, or the flow between steps?”

This approach validates their concern while gathering specific, actionable information you can

actually design with.

Documenting decisions
Every meeting needs to have all decisions documented in one place and shared with everyone.

You can make this step super easy with automated notetaking tools such as Loom, Fathom, Otter.

ai, or Zoom’s built-in transcription that can automatically join meetings when you connect your

calendar.

Even if the meeting is offline, I usually start a Google Meet with myself and add a Loom recording

bot. The meeting will automatically create a recording with a clear transcript that you can input into

ChatGPT or Claude to extract action steps, decisions, tasks, deadlines, and so on from the meeting in

seconds. This allows you to focus solely on the presentation rather than note-taking.

Chapter 9 221

Follow-up actions
Send a review summary within 24 hours that includes the following:

•	 Key decisions made

•	 Action items with owners and deadlines

•	 Updated timeline if changes affect the schedule

•	 Link to the updated Figma file with any changes made during the session

This follow-up email or Slack message serves as a record and ensures everyone remembers what

was agreed upon.

Using interactive prototypes to gather live feedback
Interactive prototypes are powerful tools for stakeholder engagement because they make abstract

design concepts tangible. Instead of asking stakeholders to imagine how something will work,

you can show them. This dramatically improves the quality of feedback you receive and helps

stakeholders understand the user experience in a way static designs cannot achieve.

We talked more about prototypes in Chapter 4, but I want to share only a few new points about

them tied to stakeholder engagement.

What’s the problem?
Static presentations force stakeholders to mentally simulate interactions, often leading to wrong

assumptions about user behavior and technical complexity. This imagination gap creates multiple

collaboration challenges:

•	 Lack of historical references: When I put a bunch of static designs in front of you, I’m

pretty sure you would see interactions in your head, just based on your past experience

and the reality that you’re a designer who thinks about design every day when you en-

counter it around you. But stakeholders usually aren’t these people, and something that

is super clear for you may be completely new to them.

•	 Imagination gap: Stakeholders see a static checkout flow and think “looks good,” but

they don’t understand how confusing the actual clicking experience might be until it’s

built and too late to change.

•	 Interface intimidation: Figma’s interface overwhelms non-designers. They’re afraid to

click around and explore, so they provide surface-level feedback instead of engaging

deeply with the design.

Elevating Stakeholder Engagement222

•	 Ownership absence: When stakeholders can’t interact with designs, they don’t develop

emotional investment in the solutions. They see themselves as critics rather than col-

laborators.

•	 Decision-making in a vacuum: Executives approve designs based on static screens or

screenshots in boardrooms, never experiencing the actual user journey that leads to those

moments.

How to fix it
The solution is making interactive prototypes central to your stakeholder collaboration, not just

something you create for user testing.

Scale prototype complexity to stakeholder needs
Different stakeholders need different levels of prototype fidelity and complexity:

•	 Executive stakeholders: Remember, these people are juggling a lot of projects, and they

don’t need the high level of granularity that you need or know. Don’t bury them in details,

or they will feel lost and overwhelmed. Use simple, high-level flow prototypes showing

key user journeys and business outcomes. Focus on the big picture rather than interaction

details:

•	 3-5 key screens maximum

•	 Clear business value demonstration

•	 Simple click-through without complex interactions

•	 Include brief explanatory annotations

•	 Product stakeholders: Mid-fidelity prototypes with realistic content and interactions.

Show edge cases, error states, and feature integration:

•	 Complete user flows with realistic data

•	 Error states and edge case handling

•	 Integration points with existing features

•	 Conditional logic and dynamic content

Chapter 9 223

•	 Technical stakeholders: High-fidelity prototypes with complex interactions, micro-an-

imations, and responsive behavior:

•	 Detailed interaction specifications

•	 Component behavior documentation

•	 Performance considerations and constraints

•	 Accessibility features and considerations

Start early and progress from low to high fidelity
One of my beta readers pointed out something crucial that I almost missed: the importance of

starting feedback sessions early and often, iterating from low-fidelity prototypes to high-fidelity

ones. This progression is critical for getting the right kind of feedback at the right time.

I probably missed this because at Dotidot, as a small start-up, this isn’t as much of a problem. Our

stakeholders are fairly knowledgeable about the design process and can focus on functionality

even when looking at polished designs. But in larger organizations where stakeholders aren’t as

familiar with design thinking, this progression becomes absolutely crucial.

When you show high-fidelity prototypes right away, stakeholders tend to focus on colors, spacing,

and specific numbers instead of fundamental issues such as information architecture and user

flow. This can derail productive conversations about core functionality.

Here’s the progressive approach:

•	 Round 1 – Low-fidelity wireframes: Get feedback on structure, layout, and basic user

flow without visual distractions. Stakeholders focus on “does this make sense?” rather

than “I don’t like this shade of blue.”

•	 Round 2 – Mid-fidelity with real content: Once the structure is validated, add realistic

content and basic styling. This helps stakeholders understand how the design works

with actual data.

•	 Round 3 – High-fidelity polish: Only after the flow and content strategy are solid should

you introduce final visual design, micro-interactions, and detailed styling.

This approach prevents the common scenario where stakeholders approve a beautiful high-fidelity

design, only to realize later that the underlying user flow doesn’t work for their business needs.

Elevating Stakeholder Engagement224

Integrate real user feedback with stakeholder sessions
One of the most powerful stakeholder engagement techniques is bringing real user voices into

the design process through prototype testing.

User testing integration
The most effective approach is to make user feedback a central part of your stakeholder conver-

sations, not something that happens separately:

•	 Use tools such as Maze (there are other tools, but I have very good experience with Maze)

to test your Figma prototypes with actual users

•	 Collect quantitative data (task completion rates and time on task) and qualitative feedback

•	 Create user testing summary reports for stakeholder review

•	 Record everything, because for stakeholders, users are often a distant entity, but when they

see a video of the user testing, it’s much more impactful than just a Google Docs report

•	 Schedule stakeholder sessions to review user testing results together

Stakeholder-user comparison sessions
Another powerful technique is having stakeholders experience the design exactly as your test

users did, then comparing the results:

•	 Have stakeholders complete the same tasks you tested with users

•	 Compare stakeholder assumptions with actual user behavior

•	 Identify gaps between stakeholder expectations and user reality

•	 Use data to guide design iteration priorities

Create stakeholder testing scenarios
Turn stakeholder reviews into structured usability sessions that build empathy for user challenges.

Task-based testing
Take the following examples:

•	 “Try to find information about our pricing plans”

•	 “Complete a purchase for the premium subscription”

•	 “Update your account notification preferences”

•	 “Find help documentation for a billing question”

Chapter 9 225

Observe them
The real insights come from watching how stakeholders actually interact with your design, not

just listening to what they say about it:

•	 Watch where stakeholders hesitate or get confused

•	 Note what they click first versus what you intended

•	 Ask questions about their expectations versus reality

•	 Document their mental model versus your design assumptions

•	 Compare their behavior with real user testing data

Implementing agile design changes based on
stakeholder input
One of the biggest challenges in stakeholder engagement is managing change requests efficiently.

Stakeholders will have new ideas, shifting priorities, and evolving requirements. The goal isn’t

to prevent changes but to implement them in a way that maintains project momentum and

design quality.

What’s the problem?
Once we were in a meeting and there was one C-level manager saying, “I don’t understand why

these small changes take so long.” The changes were small in her eyes. To be honest, they would

have looked small to me too if I didn’t have the details.

Agile development methodologies have transformed how software is built, but they’ve created an

expectation that everything can be done now, or at least by the end of the day. This often isn’t the

case, and this misalignment of expectations creates distrust between stakeholders and design/

development teams.

How to fix it
In my experience, disappointments come from wrongly set expectations, so the solution to this

problem is to create a clear and transparent environment where stakeholders can see for them-

selves what’s going on and why.

Elevating Stakeholder Engagement226

Clear feedback windows
I mentioned this in Chapter 1, but when you’re expecting feedback from multiple people, you need

to add strict deadlines. The importance of your project can be different for each stakeholder, and

they will prioritize accordingly. For example, for one person, it will have priority number 1, so

when you ask for feedback, they’ll provide it by the end of the day. But there’s a second stakeholder

who sees this project as priority number 3, and you’ll need to wait a week for their feedback. If

the first person doesn’t know this, they’ll be frustrated that their feedback is taking so long to

implement, but in the meantime, you’re waiting for complete feedback to be able to start working.

Change request prioritization
Show all stakeholders and decide together where every piece of feedback falls. Based on that, they

will understand, or at least agree on, what the priority order is.

Critical
•	 Business impact: Directly affects revenue, prevents core task completion, or creates legal/

compliance issues.

•	 Ask yourself: Does this prevent users from completing their main goal? Would this block

a product launch?

•	 Examples: “Login button doesn’t work on mobile,” “Payment processing fails,” “Site

violates accessibility standards.”

Important
•	 Business impact: Significantly improves conversion rates, reduces support burden, or

enhances user retention.

•	 Ask yourself: Would fixing this measurably improve our key metrics? Do multiple users

struggle with this?

•	 Examples: “Checkout flow is confusing (affects conversion),” “Search results aren’t rele-

vant,” “Mobile navigation is hard to use.”

Enhancement
•	 Business impact: Increases user satisfaction or brand perception but doesn’t affect core

metrics.

•	 Ask yourself: Is this nice-to-have? Would users notice if we didn’t fix it immediately?

•	 Examples: “Button could be more visually appealing,” “Animation could be smoother,”

“Better micro-copy.”

Chapter 9 227

Experimental
•	 Business impact: An unproven concept that needs validation before investment

•	 Ask yourself: Are we guessing this would help? Do we need data before deciding?

•	 Examples: “Maybe we should add social login,” “Consider adding a chatbot,” “What if

we tried a different layout?”

Tiered feedback integration
You need to teach stakeholders and the whole company that not all feedback is equal, and based

on the “tier,” they can expect different timelines for results:

•	 Immediate changes (same day): Business-critical changes that can’t wait and need to

be done ASAP. These should only be small tweaks. An example is: “Copy changes on the

website about discounts ending today.”

•	 Sprint changes (1-2 weeks): User flow modifications, new feature integration.

•	 Roadmap changes (future sprints): Structural changes requiring research and planning.

Communicating change impact
Always explain the implications of requested changes. Stakeholders might not realize that what

seems like a small visual adjustment could require significant development work or impact other

parts of the system.

The trade-off conversation script
Use this framework to make trade-offs concrete and help stakeholders make informed decisions

rather than assuming everything can be done simultaneously:

“I understand this looks like a small change. If we prioritize this, it means [X hours of work], which would

delay [Y feature] or push back our timeline by [Z time]. Which would you prefer we focus on first?”

Here are some examples:

•	 “I understand moving the search bar looks simple. If we prioritize this, it means eight

hours of development work, which would delay the user dashboard feature by two days.

Which would you prefer we focus on first?”

•	 “I see why you’d want that animation added. If we prioritize this, it means 12 hours of de-

sign and development time, which would push back our testing phase by a week. Which

is more important for our launch deadline?”

Elevating Stakeholder Engagement228

This approach transforms “can we just add this small thing?” conversations into strategic priority

discussions.

Use visual aids to show change impact. Create simple before/after comparisons or use Figma’s

version comparison feature to highlight what’s different.

Provide time estimates for implementing changes. This helps stakeholders make informed deci-

sions about whether the change is worth the investment.

Branches or versioning
We talked about branches and versions in Chapter 1, but I want to repeat it again. I was part of

many projects where we started running in circles, and stakeholders were providing feedback on

things we had in our design earlier. Some designers just deleted the previous versions or redesigned

them, and when this happened, they needed to redesign them again. Do your versions in Figma.

Save them before every feedback session so you can come back quickly if needed.

Design Sprint
I could write a whole book about this point. In fact, Jake Knapp did write it, and I have it right

behind me on my bookshelf. But if you feel pushed to perform super fast, try suggesting a Design

Sprint. It will be very time-consuming for all stakeholders, but in calendar days, it’s the fastest

way you can deliver results. If you’re more interested in the whole Design Sprint topic, check out

his book (https://www.thesprintbook.com/).

Set AI boundaries and expectations
This is quite a new topic in my opinion, but in recent months, I’ve been part of sessions where AI

was brought up in a way that suggested everything can be quickly vibe-coded in an hour because

that’s what people saw on LinkedIn. The discussion in that meeting wasn’t handled properly,

and the meeting ended with designers and developers feeling that managers know nothing, and

management thinking we only have slow people on the team who don’t want to learn new things.

Think about this and have a more deeply open conversation about it. The LinkedIn hype train is

real, and you need to set clear expectations about the capabilities of these tools and what they’re

built for. Show them live examples where AI is limited and explain where you’re using it every

day to be faster and more productive.

https://www.thesprintbook.com/

Chapter 9 229

Presenting the design rationale for stakeholder
alignment
One of the biggest challenges in stakeholder collaboration is getting everyone aligned on not just

what the design looks like but why specific decisions were made. Stakeholders who understand

the reasoning behind design choices become advocates rather than critics, leading to smoother

approvals and better long-term collaboration.

Remember, you live and breathe design, but they don’t, and that’s okay. It isn’t their job to be

enthusiastic about it and get everything on the first try. That’s your job. This is, in my opinion,

one of the main differences between junior and senior designers: how you can align the whole

team behind your decisions.

What’s the problem?
Many designers present solutions without adequately explaining the thinking process that led

to those solutions. This creates several collaboration challenges that can derail even the best

design work:

•	 Solution without story: Stakeholders see the final design but don’t understand the user

research, business constraints, and strategic thinking that informed the solution.

•	 Personal preference debates: Without a clear rationale, stakeholder feedback defaults

to personal preferences rather than evidence-based evaluation.

•	 Decision reversal: Stakeholders who don’t understand why decisions were made are

more likely to request changes that undermine the design strategy.

•	 Lack of design advocacy: When stakeholders don’t understand design value, they can’t

defend design decisions in meetings where designers aren’t present. This is a big problem

for your whole design team. I was part of meetings in one multinational company where

they looked at designers as the “painters” who create nice mockups. You don’t want to

be in this role, but don’t blame the stakeholders if you don’t know how to explain your

job and added value. It’s your mistake.

Elevating Stakeholder Engagement230

How to fix it
Don’t assume that stakeholders know what you know. Be ready to have different stories about

the project based on your target groups. For example, I can talk about decisions at Dotidot in

formats of 2 minutes, 5 minutes, 30 minutes, or hours. I have ready in my head the main points

that I want to include in these stories based on the available time and target group.

Imagine it with something super easy to grasp. Think for a minute how you would explain why

you chose the destination of your last vacation if you had 2 minutes, 5 minutes, 30 minutes, or

hours. You’ll see how the arguments and key points will be slightly different, based on the priority

for your decision. You need to have the same thing ready for your current projects and decisions.

Different stakeholders need different levels of detail
Different stakeholders need different levels of detail about your design thinking.

Executive summary level (2 minutes)
•	 Business problem being solved

•	 Key user need being addressed

•	 Success metrics and expected outcomes

•	 High-level solution approach

Strategic overview level (5 minutes)
•	 User research insights driving design decisions

•	 Competitive analysis and market positioning

•	 Technical constraints and opportunities

•	 Brand alignment and consistency considerations

Detailed rationale level (30 minutes)
•	 Design principle application and trade-offs

•	 User testing results and iteration history

•	 Component and interaction decision reasoning

•	 Accessibility and performance considerations

The interesting thing is that every one of these stories has the same structure for me, and that’s this:

•	 The challenge: What problem are we trying to solve?

•	 Our approach: How did we decide to tackle this challenge?

Chapter 9 231

•	 The solution: What did we create and why?

•	 The impact (if you already have some data): How does this solution address the original

challenge?

Use data-driven storytelling
Most stakeholders love data. Data is something they can rely on, and if the project goes sideways,

they can always point to the data and say, “But this is what the data told us.” Try to find this data

and add it to your stories.

User research integration
•	 Quote specific user feedback that influenced design decisions

•	 Show user journey pain points that your design addresses

•	 Reference user personas and scenarios driving design choices

Business impact connection
•	 Link design decisions to business goals and KPIs

•	 Show competitive advantages created by design choices

•	 Quantify expected improvements in user behavior

Technical feasibility evidence
•	 Document engineering input that shaped design decisions (another team’s input gives

your opinion more value. If more teams think the same, it needs to be good, right?).

•	 Explain performance considerations affecting interface choices.

•	 Show how design decisions support development efficiency.

•	 Include accessibility compliance and inclusive design rationale.

Hard data
•	 Use analytics tools such as Google Analytics 4 to show current user behavior patterns

that inform design decisions

•	 Include session recordings from tools such as Microsoft Clarity or Hotjar to demonstrate

actual user struggles and behavior patterns

•	 Reference conversion funnel data that shows where users drop off in current flows

•	 Show page performance metrics that justify design choices (load times, bounce rates, etc.)

•	 Include A/B testing results from previous design changes to demonstrate impact

Elevating Stakeholder Engagement232

Document decisions for future reference
One of my beta readers suggested adding this concept, and I’m grateful for it because it’s such

a practical addition. Design Decision Records (DDRs) are lightweight documents that capture

important design decisions and their reasoning. Think of them as a permanent record of your

design rationale that stakeholders can reference months later.

The concept comes from software development (where they’re called architecture decision re-

cords), but it works brilliantly for design teams facing the same challenges we discuss in this

chapter.

Here’s a basic DDR structure:

•	 Context: What situation led to this decision?

•	 Decision: What exactly was decided?

•	 Status: Proposed, accepted, or rejected?

•	 Consequences: Positive and negative outcomes expected

The following is an example DDR.

Title: Allow Guest Checkout Without Account Creation

Status: Accepted

Context: Cart abandonment rate was 68%, with user research showing that 43% of users aban-

doned when forced to create an account. Competitors such as Amazon and Target offer guest

checkout.

Decision: Implement a guest checkout option with optional account creation at the end of pur-

chase process.

Consequences:

•	 Positive: Reduced friction, faster checkout, likely improved conversion rates

•	 Negative: Fewer registered users initially, harder to track customer lifetime value

How do DDRs solve common stakeholder problems?

•	 Prevent decision reversal: When stakeholders question decisions months later, you have

documented reasoning

•	 Enable design advocacy: Stakeholders can reference DDRs to defend decisions when

you’re not in meetings

Chapter 9 233

•	 Stop relitigation: “We already decided this, here’s the documented reasoning...”

•	 Help onboarding: New stakeholders understand the design evolution and current state

You can create DDRs in Notion, Confluence, or even simple Google Docs. The key is making them

easily searchable and accessible to all stakeholders.

Different stories for different teams, but at their core, they are
the same
Every team and every stakeholder speaks a little bit of a different language. This is a crucial point

because what will work for a development team won’t work for product, sales, or marketing.

The same design decision can be explained differently to different stakeholders based on what

they care about most. You need to adjust this based on your situation, but these are some general

points that these teams care about.

For product managers
•	 Feature adoption and user engagement implications

•	 Roadmap integration and development prioritization

•	 Competitive positioning and market differentiation

•	 User satisfaction and retention impact

For development teams
•	 Implementation complexity and timeline estimates

•	 Performance considerations and technical trade-offs

•	 Reusability and maintainability benefits

•	 Integration requirements with existing systems

For marketing teams
•	 Brand consistency and visual identity alignment

•	 Campaign integration opportunities and constraints

•	 Message clarity and conversion optimization

For executive stakeholders
•	 Business value and revenue impact potential

•	 Risk mitigation and competitive advantages

Elevating Stakeholder Engagement234

•	 Resource requirements and ROI expectations

•	 Strategic alignment with company objectives

If you’re talking about design systems, use Figma’s built-in analytics (if you’re on Organization/En-

terprise plans) to show stakeholders how design decisions ripple through your organization:

•	 Component usage tracking showing adoption patterns

•	 Detach rate analysis indicating component effectiveness

•	 File activity metrics revealing stakeholder engagement patterns

•	 Design consistency improvements over time

Managing complex feedback loops for stronger
stakeholder relationships
When working with multiple stakeholders across different departments and seniority levels,

feedback can quickly become overwhelming and contradictory. The challenge isn’t just collecting

feedback but synthesizing it into actionable design decisions while maintaining strong relation-

ships with all stakeholders involved.

What’s the problem?
Complex stakeholder groups often provide conflicting feedback because they have different pri-

orities, perspectives, and levels of context about the design decisions. Without proper manage-

ment, these feedback loops can become circular, with stakeholders contradicting each other and

designers caught in the middle.

Additionally, stakeholder fatigue is real. If the feedback process is too cumbersome or if stake-

holders feel their input isn’t being heard, they’ll either disengage entirely or become increasingly

critical and difficult to work with.

How to fix it
The solution involves creating clear feedback structures and managing expectations effectively.

Establishing feedback hierarchies
Not all stakeholder feedback carries equal weight, and it’s important to establish this clearly from

the beginning. In bigger teams where there are a lot of stakeholders at once, this is usually not

clear. Don’t just agree on it verbally. Have it as part of your project brief so you can always come

back to it and reference it.

Chapter 9 235

Identify decision-makers for different types of choices. For example, the product manager might

have the final say on feature prioritization, while the tech lead decides on implementation fea-

sibility, and the design lead determines consistency with the design system. At first glance, this

sounds obvious, but don’t assume that everyone has the same point of view as you.

I once witnessed a big disagreement about who should have the final say on feature prioritization:

a new product manager or a senior tech lead who had been at the company from the start. The

tech lead thought he knew much more than the product manager because he’d been there for a

long time, and he was correct about having more knowledge. But there’s a big difference between

providing feedback and having the final say. It’s a completely different responsibility level.

Sequential versus parallel feedback collection
Based on the preceding point, decide how you will gather feedback. I started doing this deliber-

ately, and it had a big impact on the smoothness of the process:

•	 Sequential: Gather feedback from stakeholders in priority order, with each round building

on previous input. This usually takes a little bit longer, but you have fewer rounds overall.

•	 Parallel: Collect feedback simultaneously and synthesize conflicts through facilitated

discussion. You get some feedback fast, but there will be more rounds of feedback because

some points from stakeholders will contradict each other.

•	 Hybrid: Use parallel collection for initial input, then sequential refinement for conflict

resolution.

Consolidating and synthesizing feedback
Use structured feedback collection methods. Instead of collecting random comments, provide

stakeholders with specific frameworks for giving feedback. For example, ask them to categorize

their input as “must fix,” “should consider,” or “nice to have.”

I also mentioned this before in Chapter 1, but be sure to create a simple guide on how to comment

in Figma: how to tag people, how to use emojis, and so on. It will help you a lot.

If your company doesn’t use Loom, try to encourage stakeholders to adopt it, because often video

feedback is much better than written messages. You’ll save time on long meetings where you still

need to do recording to understand everything, or spend half the time writing notes.

Elevating Stakeholder Engagement236

Maintaining stakeholder relationships
If you want to be in this role, some part of your job as a designer will be invested in managing

relationships. That’s the reality.

Acknowledge all feedback, even when you can’t implement it. Explain your reasoning for not

implementing certain suggestions and show how you considered their perspective in your de-

cision-making.

Provide regular updates on how feedback is being incorporated. This keeps stakeholders engaged

and demonstrates that their input is valued and considered.

Create opportunities for stakeholders to see each other’s perspectives. Sometimes the best way

to resolve conflicting feedback is to facilitate a conversation between stakeholders rather than

trying to mediate separately.

Relationship repair process
My last point is about repair. Not everything will go smoothly, and that’s okay. Sometimes we

need to cool down and take another breath. In the end, it’s just a job.

I try to follow these short guidelines in face-to-face meetings (if possible) or online calls:

1.	 Acknowledge the problem: Recognize relationship damage and its impact on design work.

2.	 Understand root causes: Investigate underlying issues beyond surface-level conflicts.

3.	 Facilitate direct communication: Help stakeholders discuss issues with appropriate

mediation (be neutral, that’s your job in this meeting).

4.	 Rebuild trust gradually: Create small wins and positive interaction opportunities.

Managing complex feedback doesn’t mean avoiding stakeholder disagreements. Instead, it’s

about turning different viewpoints into better design solutions that work for both users and the

business. When stakeholders see their feedback valued and thoughtfully integrated, they stop

being critics and become true collaborators.

Building strong stakeholder relationships through these five advanced techniques transforms

design work from a solitary activity into a collaborative partnership. When stakeholders under-

stand design rationale, participate in interactive exploration, and see their feedback integrated

systematically, they become advocates for good design throughout your organization.

Chapter 9 237

The key is consistent application of these techniques over time. Start with the approaches that

address your biggest stakeholder challenges, then gradually implement more sophisticated col-

laboration methods as relationships strengthen and trust builds.

Remember, every stakeholder interaction is an opportunity to demonstrate design value and

build the foundation for even better collaboration on future projects. The investment you make

in stakeholder relationships today pays dividends in smoother approvals, better design outcomes,

and more strategic influence for design in your organization.

Unlock this book’s exclusive
benefits now
Scan this QR code or go to packtpub.com/

unlock, then search this book by name.

Note: Keep your purchase invoice ready before

you start.

packtpub.com/unlock
packtpub.com/unlock

10
Unlock Your Book’s Exclusive
Benefits

Your copy of this book comes with the following exclusive benefits:

 Next-gen Packt Reader

 AI assistant (beta)

 DRM-free PDF/ePub downloads

Use the following guide to unlock them if you haven’t already. The process takes just a few min-

utes and needs to be done only once.

How to unlock these benefits in three easy steps
Step 1
Have your purchase invoice for this book ready, as you’ll need it in Step 3. If you received a physical

invoice, scan it on your phone and have it ready as either a PDF, JPG, or PNG.

For more help on finding your invoice, visit https://www.packtpub.com/unlock-benefits/help.

Note: Did you buy this book directly from Packt? You don’t need an invoice. After completing Step 2,

you can jump straight to your exclusive content.

Note: Bought this book directly from Packt? You don’t need an invoice. After com-

pleting Step 2, you can jump straight to your exclusive content.

https://www.packtpub.com/unlock-benefits/help.

Unlock Your Book’s Exclusive Benefits240

Step 2
Scan this QR code or go to packtpub.com/unlock.

On the page that opens (which will look similar to Figure 10.1 if you’re on desktop), search for

this book by name. Make sure you select the correct edition.

Figure 10.1: Packt unlock landing page on desktop

Step 3
Once you’ve selected your book, sign in to your Packt account or create a new one for free. Once

you’re logged in, upload your invoice. It can be in PDF, PNG, or JPG format and must be no larger

than 10 MB. Follow the rest of the instructions on the screen to complete the process.

packtpub.com/unlock

Chapter 10 241

Need help?
If you get stuck and need help, visit https://www.packtpub.com/

unlock-benefits/help for a detailed FAQ on how to find your in-

voices and more. The following QR code will take you to the help

page directly:

Note: If you are still facing issues, reach out to customercare@packt.com.

https://www.packtpub.com/unlock-benefits/help
https://www.packtpub.com/unlock-benefits/help

packtpub.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well as

industry leading tools to help you plan your personal development and advance your career. For

more information, please visit our website.

Why subscribe?
•	 Spend less time learning and more time coding with practical eBooks and Videos

from over 4,000 industry professionals

•	 Improve your learning with Skill Plans built especially for you

•	 Get a free eBook or video every month

•	 Fully searchable for easy access to vital information

•	 Copy and paste, print, and bookmark content

At www.packt.com, you can also read a collection of free technical articles, sign up for a range of

free newsletters, and receive exclusive discounts and offers on Packt books and eBooks.

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Designing Information Architecture

Pabini Gabriel-Petit

ISBN: 978-1-83882-719-9

•	 Information-seeking models, strategies, tactics, and behaviors

•	 Principles for designing IAs that support human cognitive and visual capabilities

•	 Wayfinding principles for placemaking, orientation, navigation, labeling, and search

•	 Useful structural patterns and information-organization schemes

•	 UX research methods and analytics for information architecture

•	 Content analysis, modeling, and mapping methods

•	 Categorizing content and creating controlled vocabularies

•	 Designing and mapping information architectures

•	 Leveraging artificial intelligence (AI) to deliver optimal search results

https://www.packtpub.com/en-us/product/designing-information-architecture-9781838827199

Other Books You May Enjoy246

Inclusive Design for Accessibility

Dale Cruse, Denis Boudreau

ISBN: 978-1-83588-822-3

•	 Master the core principles of inclusive design to create products that serve all

•	 Conduct diverse user research to gain insights into accessible experiences

•	 Implement accessibility best practices in your web and mobile deployments

•	 Create fully accessible content in text, audio, and video formats

•	 Explore the accessibility challenges and opportunities with AI, VR, and AR

•	 Navigate the legal and ethical implications of accessibility to protect users and
your brand

•	 Establish accessibility-focused workflows and practices in your teams

https://www.packtpub.com/en-us/product/inclusive-design-for-accessibility-9781835888223

Other Books You May Enjoy 247

Packt is searching for authors like you
If you’re interested in becoming an author for Packt, please visit authors.packtpub.com and

apply today. We have worked with thousands of developers and tech professionals, just like you,

to help them share their insight with the global tech community. You can make a general appli-

cation, apply for a specific hot topic that we are recruiting an author for, or submit your own idea.

Share your thoughts
Now you’ve finished Design Beyond Limits with Figma, we’d love to hear your thoughts! If you

purchased the book from Amazon, please click here to go straight to the Amazon review

page for this book and share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make sure we’re deliv-

ering excellent quality content.

https://packt.link/r/1836207719
https://packt.link/r/1836207719

Index

A
accessibility, across platforms

testing and validating 178
testing and validating issue 178
testing and validating issue, fixing 178
testing, in code 180-183
testing, in Figma 178-180
testing routine, creating 183

accessibility features, in Figma
documenting 170
documenting issues 170
documenting issues, fixing 170-174

accessibility, in design
issues 158
issues, fixing 159
significance 158

Accessible Rich Internet Applications (ARIA)
concepts 169

advanced collaborative design
advanced sharing and permissions settings,

unlocking 20, 21
communication gaps, between designers

and developers 4-6
constant changes 16, 17
designers, technical limitations 15, 16
feedback loops, facilitating 21-23
repetitive design meetings,

consequences 6-15
version control and iterations,

streamlining 17-19

advanced component libraries
building 103-108

Advanced Perceptual Contrast Algorithm
(APCA) 162

advanced sharing and permissions settings
unlocking 20, 21

agile design changes, based on stakeholder
input

implementation issues, fixing 225-229
implementing 225
implementing, issues 225

AI assistants
using, strategically 177

AI-driven design
ethical challenges, navigating 71

AI-enhanced design workflows
analyzing, case studies 70, 71
content assistant, marketing 71
specialist assistant, marketing 70
UX writer assistant 70

AI features, in Figma
design tools 52-59
exploring 51
image editing 61-65
riffing and writing 59-61

AI, into design workflow
implementing 68
implementing issues 68
implementing issues, fixing 68-70

Index250

AI tools, for faster prototyping
integrating 66
integrating issues 66, 67
integrating issues, fixing 67, 68

animation handoffs
issues 205
issues, fixing 205-210

Asana 46
asset export 186
Auto Documentation 41

B
Batch Styler 29-31
Boost resolution feature 63, 64
Brandfetch 40
Builder.io 38

C
change request prioritization 226, 227
Charts plugin 43
clear feedback windows 226
code

accessibility, testing 180-183
Code Connect bridges 90

use case 91
working 91

code syntax feature 195-198
collaborative reviews, with stakeholders

clear project narrative, establishing 217
conversation, managing 219, 220
decisions, documenting 220
follow-up actions 221
issues, fixing 216

review preparation 217, 218
review session structure 218, 219
running 216
running, issues 216
scripts, for unclear feedback 220

communicating changes
use case 89

component playground 87
use case 88

components, with proper color contrast
ratios

creating 160
creating issues 160
creating issues, fixing 161-163

Content Reel plugin 39, 40
cross-team consistency

token documentation, maintaining
for 153-156

D
Deque

URL 183
design-code bridge

design tokens as 118-120
Design Decision Records (DDRs) 232
designer-developer communication

communication cheat sheets,
creating 83, 84

problem 82
solution 82, 83
streamlining 82

designers
technical limitations, considerations 15, 16

designers, and developers
communication gaps, between 4-6

Index 251

design files for developer accessibility
problem 74
solution 74
structuring 74

design files for developer accessibility,
project files

standard file structure 77-79
design files for developer accessibility,

solution
branching 79
project files 76, 77
time-period files 75, 76

design rationale, for stakeholder alignment
presenting 229
presenting, issues 229
presenting issues, fixing 230-234

design system
advanced component libraries, building 103
checks, implementing 111
creating, time and cost 97, 98
creation, issue 94
creation planning 94
designers, used for working on 102
developers, usage considerations 103
dynamic system scaling, to accommodate

product iterations 115, 116
goal 95, 96
historic systems, used for building 98, 99
issue, fixing 95
managing, for growing teams 111, 112
onboarding new people, frequency 102
pre-built solutions, using 99, 100
systematic documentation and standards,

ensuring 108-111
technical limitations, considerations 100

usage, considerations 96, 97
working, challenges 101, 102

design system, component libraries
building issues 103
building issues, fixing 103-108

design tokens
applying, to design 142, 143
as design-code bridge 118-120
building, structure 126-129
creating 138, 139
documentation, maintaining for cross-team

consistency 153-156
implementing, in Figma via

Token Studio 129, 130
usage, considerations in team 120-123
version controlling, with

GitHub or GitLab 152, 153
versus Figma variables 123-126

design tokens, in Figma via Token Studio
plugin, usage 131-145

design tools 52
First Draft feature 57-59
interactions, adding 55
Rename layers AI feature 52-54
Replace content feature 56
searching, with image or selection 54, 55

development objectives design goals
aligning 84
problem 84
solution 84, 85

Dev Mode educator 92
Downsize 45
dynamic system

scaling, to accommodate product
iterations 115, 116

Index252

E
Edit image feature 65
essential plugins, for enhanced functionality

community-driven 31-33
development, source 33
one-time usage, problem and solution 29-31
selecting 26, 27
single user, problem and solution 27, 28
viable alternatives 33, 34

European Accessibility Act (EAA) 31, 157

F
feedback loops

facilitating, in collaborative designs 21-23
feedback loops, for stakeholder

relationships
managing 234
managing, issues 234
managing issues, fixing 234-237

Figma
accessibility, testing 178-180

Figma Contrast Checker 161, 162
Figma’s design system tools

utilizing 112
utilizing, issues 113
utilizing issues, fixing 113, 114

Figma’s Dev Mode
problem 86
Ready for dev filter 89
solution 86
using 86

Figma’s Dev Mode, solution
Code Connect bridges 90
communicating changes 89

component playground 87
tokens and variables, reading 86

Figma to Framer 48
Figma to Webflow 46
Figma variables

applying, to designs 151
first variable and collection,

creating 146, 147
implementing 145
implementing, steps 145, 146
semantic variables, creating 147, 148
versus design tokens 123-126
versus styles 151

Figma variables, for specific platforms
issues 194
issues, fixing 195-198
preparing 194

Figma, via Token Studio
design tokens, implementing 129-145

Figma, with software for cross-platform
integration

linking 45
linking, issues 45
linking issues, fixing 45-48

First Draft feature 57-59

G
GitHub 46

using, for version controlling design
tokens 152, 153

GitHub sync
setting up, step by step 131-137

GitLab
using, for version controlling design

tokens 152, 153

Index 253

growing teams
design systems, managing for 111, 112

H
high-fidelity implementation

ensuring 198
ensuring, issues 199
ensuring, issues fixing 199-201

I
image editing feature 61
image or selection feature

searching with 54, 55
Inspect tab

using 143-145
interactive prototype handoffs

issues 202
issues, fixing 202-205

interactive prototypes, for developers
creating 80
problem 80
solution 80, 81
user flow blueprints for maximum impact,

creating 81, 82
interactive prototypes, for live feedback

issues 221
issues, fixing 222-225
using 221

J
Jira 46

K
keyboard accessibility and navigation

designing 163
designing issues 163
designing issues, fixing 163-166

L
large export files 187, 188
Loom video 13-15

M
Minimum Viable Product (MVP) 10, 158
modern file formats 188

P
platform conventions 195
plugin

writing, considerations 49, 50
plugins, for projects

design problems, solving with 43-45
precise export options, for accurate delivery

issues 186
issues, fixing 187-191
setting 186

product managers (PMs) 121

Q
quality assurance process

issues 210
issues, fixing 210-213

Index254

R
Ready for dev filter 89

use case 90
Remove background feature 62, 63
Rename layers AI feature 52-54
repetitive design meetings

consequences 6-13
Loom video walk-through 13-15

repetitive tasks, with plugin integration
automating 38
automating, issues 38
automating issues, fixing 38-41

Replace content feature 56
Rewrite this... feature 59, 60
riffing and writing feature 59-61
routine tasks, with AI in Figma

automating 65
automating, issues 66
automating issues, fixing 66

S
screen reader compatibility, in design

system
ensuring 166
ensuring issues 166, 167
ensuring issues, fixing 167-170

Search 10
Search Engine Optimization (SEO) 168
semantic tokens

creating 139-142
semantic variables

collections, organizing for modes 150
constraints and scoping 149

constraints, need for 150
creating 147, 148

Shorten feature 60
Stark 31-33
Stark plugin 162
Style Dictionary 126
SVG icon, for clean export

export quality, testing 194
optimization 191
optimization issues 192
optimization issues, fixing 192-194

systematic documentation and standards
ensuring 108-111

T
tiered feedback integration 227, 228
tokens and variables

reading 86
use case 87

Token Studio 35
new set, creating 138
structure 138

Translate to... feature 61

U
Unsplash plugin 38

V
Variables, to CSS 36
Variables, to JSON 37
version control and iterations

streamlining 17-19

Index 255

W
WCAG standards, in design process

integrating 174
integrating issues 174
integrating issues, fixing 175-178

Web Content Accessibility Guidelines
(WCAG) 174

workflow efficiency, with time-saving
plugins

streamlining 34
streamlining, issues 34
streamlining issues, fixing 34-38

wrong naming conventions 188
icons, exporting 189
images, exporting 189

	Cover
	FM
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Advanced Collaborative Design with Figma
	Getting the most out of this book – get to know your free benefits
	Next-gen reader
	Interactive AI assistant (beta)
	DRM-free PDF or ePub version

	Communication gaps between designers and developers
	What’s the problem?
	How to fix it

	Repetitive design meetings waste time and delay progress
	What’s the problem?
	How to fix it
	Loom video walk-through

	Designers may not anticipate technical limitations, leading to missing details for developers
	What’s the problem?
	How to fix it

	Constant changes in the design
	What’s the problem?
	How to fix it

	Streamlining version control and iterations
	What’s the problem?
	How to fix it

	Unlocking advanced sharing and permissions settings
	What’s the problem?
	How to fix it
	There’s more...

	Facilitating feedback loops in collaborative designs
	What’s the problem?
	How to fix it

	Chapter 2: Leveraging Figma’s Plugin Ecosystem
	Selecting essential plugins for enhanced functionality
	Am I the only user?
	What’s the problem?
	How to fix it
	Plugin example—data.to.design

	Is this a one-time use?
	What’s the problem?
	How to fix it
	Plugin example—Batch Styler
	There’s more…

	Is this plugin paid?
	What’s the problem?
	How to fix it
	Plugin example—Stark

	Is it developed by a company?
	What’s the problem?
	How to fix it

	Are there any reliable alternatives?
	What’s the problem?
	How to fix it

	Streamlining workflow efficiency with time-saving plugins
	What’s the problem?
	How to fix it
	Plugin example—Token Studio
	Plugin example—Variables to CSS
	Plugin example—Variables to JSON
	Plugin example—Builder.io

	Automating repetitive tasks with plugin integration
	What’s the problem?
	How to fix it
	Plugin example—Unsplash plugin
	Plugin example—Content Reel plugin
	Plugin example—Brandfetch
	Plugin example—Auto Documentation

	Specific project needs solved by plugins
	What’s the problem?
	How to fix it
	Plugin example—Charts plugin
	Plugin example—Downsize

	Linking Figma to other software for cross-platform integration
	What’s the problem?
	How to fix it
	Plugin example—Jira
	Plugin example—Asana
	Plugin example—GitHub
	Plugin example—Figma to Webflow
	Plugin example—Figma to Framer
	There’s more…

	When to consider writing your own plugin
	What’s the problem?
	How to fix it

	Chapter 3: Harnessing AI in Figma and Beyond
	Exploring Figma’s built-in AI features
	Design tools
	Rename layers
	Searching with image or selection
	Adding interactions
	Replacing content
	First Draft

	Riffing and writing
	Rewrite this…
	Shorten
	Translate to…

	Image editing
	Remove background
	Boost resolution
	Make an image
	Edit image

	Automating routine tasks with AI in Figma
	What’s the problem?
	How to fix it

	Integrating AI tools for faster prototyping
	What’s the problem?
	How to fix it
	Alternative tools for specific needs
	Tips for success with any tool

	Implementing AI into your design workflow
	What’s the problem?
	How to fix it

	Analyzing AI-enhanced design workflows—case studies
	Marketing specialist assistant
	UX writer assistant
	Marketing content assistant

	Navigating ethical challenges in AI-driven design

	Chapter 4: Enhancing Designer-Developer Synergy
	Structuring design files for developer accessibility
	What’s the problem?
	How to fix it
	Time-period files (quarterly files)
	Project files
	Branching

	Creating interactive prototypes for developers
	What’s the problem?
	How to fix it
	Quick tip—create user flow blueprints for maximum impact

	Streamlining designer-developer communication
	What’s the problem?
	How to fix it
	Quick tip—create communication cheat sheets for your team

	Aligning design goals with development objectives
	What’s the problem?
	How to fix it

	Leveraging Figma’s Dev Mode
	What’s the problem?
	How to fix it
	Reading tokens and variables made simple
	Component playground for better understanding
	Comparing changes efficiently
	The Ready for Dev filter keeps everyone focused
	Code Connect bridges the final gap

	Quick tip—become the Dev Mode educator

	Chapter 5: Scaling Design Systems for Consistency
	Design system creation planning
	What’s the problem?
	How to fix it
	What is the goal of the design system?
	Where will the system be used?
	How much time (and money) do we have?
	Do we have any historic systems to build from?
	Can we use something pre-built?
	Are there technical limitations to consider?
	Do we have time to work on it consistently?
	Who will be using the design system?
	How many designers will work with it?
	How often do we need to onboard new people?
	How many developers will work with it?

	Building advanced component libraries
	What’s the problem?
	How to fix it
	Create a clear component architecture
	Leverage component properties
	Manage nested properties carefully
	Standardize property naming conventions
	Create interactive components
	Add brief descriptions
	Use component background colors

	Ensuring systematic documentation and standards
	What’s the problem?
	How to fix it
	Pick the right platform
	Establish documentation standards
	Document component behavior and usage
	Build a quick guide

	Managing design systems for growing teams
	What’s the problem?
	How to fix it
	Implement monthly design system checks
	Establish governance
	Implement version control
	Create multi-level access
	Build feedback loops

	Utilizing Figma’s design system tools
	What’s the problem?
	How to fix it
	Use Code Connect if you can
	Leverage design system analytics in Figma
	Implement design system analytics outside Figma
	Unpublish helper components
	Use branching for version control

	Dynamic system scaling to accommodate product iterations
	What’s the problem?
	How to fix it
	Implement modular architecture
	Establish update cycles
	Plan for deprecation
	Build experimentation spaces

	Chapter 6: Utilizing Design Tokens for Consistency
	Introducing design tokens as a design-code bridge
	What’s the problem?
	How to fix it

	When and how to introduce design tokens in your team
	What’s the problem?
	How to fix it
	Define your target audience
	Find ambassadors
	Identify pain points (why you’re implementing them)
	Start small with immediate impact
	Establish success metrics
	Plan onboarding of current and future team members

	Difference between design tokens and Figma variables
	What’s the problem?
	How to fix it
	For designers or developers?
	Figma versus other platforms
	Native versus plugin-based
	Token Studio isn’t just a plugin
	Token connection
	Theming
	Data structure
	Version control
	Types of tokens
	Code use

	Design token structure—how to build design tokens
	What’s the problem?
	How to fix it
	Proper hierarchy (structure)
	Practical token planning

	Implementing design tokens in Figma via Token Studio
	First use of the plugin
	Settings—Sync providers
	How to set up GitHub sync step by step
	Creation of a new set
	Proper structure

	Creation of design tokens
	Creation of alias (semantic) tokens
	Applying design tokens to your design
	Using the Inspect tab

	Implementing Figma variables
	First steps with variables
	Creating your first variable and collection
	Creating semantic variables
	Variable constraints and scoping
	Organizing collections for modes

	Applying variables to designs
	Variables versus styles

	Version controlling design tokens with GitHub or GitLab
	What’s the problem?
	How to fix it

	Maintaining token documentation for cross-team consistency
	What’s the problem?
	How to fix it
	Show them visually
	Proper categorization
	Use consistent vocabulary
	Proper naming
	Token descriptions
	Connected descriptions in design

	Chapter 7: Building Accessible Design Systems
	Understanding the importance of accessibility in design
	What’s the problem?
	How to fix it
	Management perspective
	Designer perspective

	Creating components with proper color contrast ratios
	What’s the problem?
	How to fix it
	Figma Color Contrast Checker
	Multiple design token sets/modes
	Looking ahead—Advanced Perceptual Contrast Algorithm (APCA)

	Designing for keyboard accessibility and navigation
	What’s the problem?
	How to fix it
	Focus states
	Movement order
	Proper file handoff

	Ensuring screen reader compatibility in your design system
	What’s the problem?
	How to fix it
	Alternative text
	Semantic structure
	Accessible Rich Internet Applications (ARIA)
	Testing with real screen readers

	Documenting accessibility features in Figma
	What’s the problem?
	How to fix it
	Component documentation
	Dedicated accessibility documentation
	Accessibility acceptance criteria in user stories and tickets

	Integrating WCAG standards into your design process
	What’s the problem?
	How to fix it
	Start with understanding
	Design tokens are your best friend
	Build WCAG into your components
	Use AI assistants strategically
	Train yourself and your team
	Remember the scale

	Testing and validating accessibility across platforms
	What’s the problem?
	How to fix it
	Testing in Figma
	Testing in code
	Creating a testing routine

	Chapter 8: Precision Handoff Techniques
	Setting precise export options for accurate delivery
	What’s the problem?
	How to fix it
	Large export files
	Modern file formats
	Wrong naming conventions
	Complex layers without clear export guidelines
	Poorly prepared export settings for multiple devices
	Test your exports

	SVG icon optimization for clean export
	What’s the problem?
	How to fix it
	Design with simple paths and shapes
	Flatten and combine paths instead of grouping
	Avoid masks, gradients, and complex effects
	Test your SVG export quality

	Preparing Figma variables for specific platforms
	What’s the problem?
	How to fix it
	Understand platform conventions
	Set up the variables for each platform

	Ensuring high-fidelity implementation
	What’s the problem?
	How to fix it
	Open communication channels with developers
	Establish review checkpoints
	Use shared testing environments
	Build quality assurance into the process
	Document approved deviations
	Create implementation guidelines

	Interactive prototype handoffs
	What’s the problem?
	How to fix it
	Isn’t a video enough?
	Use someone else’s interaction/check technical feasibility
	Focus on user flows
	Create multiple prototype versions

	Animation handoffs
	What’s the problem?
	How to fix it
	Try to prepare the final form of the animation

	Quality assurance process
	What’s the problem?
	How to fix it
	Establish design review checkpoints
	Create design QA checklists
	Involve designers in sprint reviews and retrospectives
	Test across real devices and conditions

	Chapter 9: Elevating Stakeholder Engagement
	Running collaborative reviews with stakeholders
	What’s the problem?
	How to fix it
	Establish a clear project narrative
	Review preparation
	Review session structure
	Managing the conversation
	Scripts for unclear feedback
	Documenting decisions
	Follow-up actions

	Using interactive prototypes to gather live feedback
	What’s the problem?
	How to fix it
	Scale prototype complexity to stakeholder needs
	Integrate real user feedback with stakeholder sessions
	Create stakeholder testing scenarios

	Implementing agile design changes based on stakeholder input
	What’s the problem?
	How to fix it
	Clear feedback windows
	Change request prioritization
	Tiered feedback integration
	Branches or versioning
	Design Sprint
	Set AI boundaries and expectations

	Presenting the design rationale for stakeholder alignment
	What’s the problem?
	How to fix it
	Different stakeholders need different levels of detail
	Use data-driven storytelling
	Different stories for different teams, but at their core, they are the same

	Managing complex feedback loops for stronger stakeholder relationships
	What’s the problem?
	How to fix it
	Establishing feedback hierarchies
	Sequential versus parallel feedback collection
	Consolidating and synthesizing feedback
	Maintaining stakeholder relationships
	Relationship repair process

	Chapter 10: Unlock Your Book’s Exclusive Benefits
	Other Books You May Enjoy
	Index
	Blank Page

